




## Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

| CANDIDATE<br>NAME |  |  |  |                     |  |      |
|-------------------|--|--|--|---------------------|--|------|
| CENTRE<br>NUMBER  |  |  |  | CANDIDATE<br>NUMBER |  |      |
|                   |  |  |  |                     |  | <br> |

CHEMISTRY 0620/41

Paper 4 Theory (Extended)

October/November 2019

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

## **READ THESE INSTRUCTIONS FIRST**

Write your centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

A copy of the Periodic Table is printed on page 16.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [ ] at the end of each question or part question.

This syllabus is regulated for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.



| Thi | This question is about ions and ionic compounds. |               |                |                  |              |                               |                                                |  |  |  |
|-----|--------------------------------------------------|---------------|----------------|------------------|--------------|-------------------------------|------------------------------------------------|--|--|--|
| (a) | Cho                                              | oose from the | following I    | ist of ions to   | answer the   | e questions.                  |                                                |  |  |  |
|     |                                                  |               | Br-            | Ca <sup>2+</sup> | C <i>l</i> - | Cr <sup>3+</sup>              | Cu <sup>2+</sup>                               |  |  |  |
|     |                                                  |               | K <sup>+</sup> | Li <sup>+</sup>  | Na⁺          | SO <sub>3</sub> <sup>2-</sup> | SO <sub>4</sub> <sup>2-</sup>                  |  |  |  |
|     | Ead                                              | ch ion may be | e used once    | e, more than     | once or no   | t at all.                     |                                                |  |  |  |
|     | Sta                                              | te which ion: |                |                  |              |                               |                                                |  |  |  |
|     | (i)                                              | gives a lilac | colour in a    | flame test       |              |                               | [1                                             |  |  |  |
|     | (ii)                                             | forms a grey  | /-green pre    | cipitate with    | aqueous a    | mmonia                        | [1                                             |  |  |  |
| (   | (iii)                                            | forms a whit  | te precipita   | te with aque     | ous sodium   | hydroxide                     | [1                                             |  |  |  |
| (   | (iv)                                             | forms a crea  | am precipita   | ate with acid    | ified aqueo  | us silver nit                 | rate[1                                         |  |  |  |
|     | (v)                                              | forms a whit  | te precipita   | te with acidif   | ied aqueou   | s barium ni                   | trate [1                                       |  |  |  |
| (b) | Des                                              | scribe how to | do a flame     | test on a sa     | ample of a s | salt                          |                                                |  |  |  |
| (~) | 20.                                              |               |                |                  |              |                               |                                                |  |  |  |
|     |                                                  |               |                |                  |              |                               |                                                |  |  |  |
|     |                                                  |               |                |                  |              |                               |                                                |  |  |  |
|     |                                                  |               |                |                  |              |                               | [2                                             |  |  |  |
|     |                                                  |               |                |                  |              |                               |                                                |  |  |  |
| (c) | Ма                                               | gnesium pho   | sphate con     | tains magne      | sium ions,   | Mg²⁺, and p                   | hosphate ions, PO <sub>4</sub> <sup>3-</sup> . |  |  |  |
|     | Dec                                              | duce the form | nula of mag    | nesium phos      | sphate.      |                               |                                                |  |  |  |
|     |                                                  |               |                |                  |              |                               | [1                                             |  |  |  |
|     |                                                  |               |                |                  |              |                               | [Total: 8                                      |  |  |  |

2

| (a) | Sulfur exists as a number of different isotopes.                                                        |     |
|-----|---------------------------------------------------------------------------------------------------------|-----|
|     | What is meant by the term isotopes?                                                                     |     |
|     |                                                                                                         |     |
|     |                                                                                                         |     |
|     |                                                                                                         | [2] |
| (b) | A sulfide ion has the symbol shown.                                                                     |     |
|     | <sup>34</sup> S <sup>2-</sup>                                                                           |     |
|     | (i) How many neutrons are contained in this sulfide ion?                                                |     |
|     |                                                                                                         | [1] |
|     | (ii) How is a sulfide ion, S <sup>2-</sup> , formed from a sulfur atom?                                 |     |
|     |                                                                                                         | [1] |
| (   | (iii) Which element forms an ion with a 2+ charge that has the same number of electrons a $S^{2-}$ ion? | as  |
|     |                                                                                                         | [1] |

| (c) | The   | manı     | facture of sulfuric acid by the Contact process occurs in four stages.                                                  |      |
|-----|-------|----------|-------------------------------------------------------------------------------------------------------------------------|------|
|     | sta   | ge 1     | Molten sulfur is burned in air to produce sulfur dioxide gas.                                                           |      |
|     | sta   | ge 2     | Sulfur dioxide is reacted with oxygen to form sulfur trioxide.                                                          |      |
|     | sta   | ge 3     | Sulfur trioxide is combined with concentrated sulfuric acid to form oleum, H <sub>2</sub> S <sub>2</sub> O <sub>7</sub> | 7•   |
|     | sta   | ge 4     | Oleum is added to water to form sulfuric acid.                                                                          |      |
|     | (i)   | Comp     | plete the chemical equation for <b>stage 1</b> by adding the appropriate state symbols.                                 |      |
|     |       |          | $S() + O_2() \rightarrow SO_2()$                                                                                        | [1]  |
|     | (ii)  | Name     | e the catalyst used in <b>stage 2</b> and state the temperature used.                                                   |      |
|     |       | cataly   | yst                                                                                                                     |      |
|     |       | tempe    | erature°C                                                                                                               | [2]  |
|     | (iii) | \/\/rita | chemical equations for the reactions in <b>stage 3</b> and <b>stage 4</b> .                                             | [4]  |
| ,   | (111) |          | 3                                                                                                                       |      |
|     |       | Stage    | ; 5                                                                                                                     | •••• |
|     |       | stage    | 9.4                                                                                                                     | [2]  |
|     |       |          |                                                                                                                         |      |
| (d) | Sulf  | fur dio  | xide is a toxic gas.                                                                                                    |      |
|     | (i)   |          | one <b>environmental</b> reason why sulfur dioxide should <b>not</b> be released into the sphere.                       | the  |
|     |       |          |                                                                                                                         | [1]  |
|     | (ii)  | Desc     | ribe the test for sulfur dioxide.                                                                                       |      |
|     |       | test     |                                                                                                                         |      |
|     |       |          |                                                                                                                         |      |
|     |       | obser    | vations                                                                                                                 |      |
|     |       |          |                                                                                                                         | [2]  |
|     |       |          |                                                                                                                         | [4]  |

| ( | (e) | Sulfur dioxide reacts with aqueous sodium sulfite to produce a compound with the following composition by mass: 29.1% Na, 40.5% S and 30.4% O. |  |  |  |  |  |  |
|---|-----|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|   |     | Calculate the empirical formula of this compound.                                                                                              |  |  |  |  |  |  |
|   |     |                                                                                                                                                |  |  |  |  |  |  |
|   |     |                                                                                                                                                |  |  |  |  |  |  |
|   |     |                                                                                                                                                |  |  |  |  |  |  |
|   |     |                                                                                                                                                |  |  |  |  |  |  |
|   |     |                                                                                                                                                |  |  |  |  |  |  |
|   |     | empirical formula =[3]                                                                                                                         |  |  |  |  |  |  |
|   |     | [Total: 16]                                                                                                                                    |  |  |  |  |  |  |
|   |     |                                                                                                                                                |  |  |  |  |  |  |
|   |     |                                                                                                                                                |  |  |  |  |  |  |
|   |     |                                                                                                                                                |  |  |  |  |  |  |
|   |     |                                                                                                                                                |  |  |  |  |  |  |
|   |     |                                                                                                                                                |  |  |  |  |  |  |

| Thi | s que | estion is about metals and metal oxides.                                                          |
|-----|-------|---------------------------------------------------------------------------------------------------|
| (a) | Mos   | st metals have a high melting point.                                                              |
|     | Sta   | te <b>one</b> other physical property that all metals have.                                       |
|     |       | [1]                                                                                               |
| (b) | Iron  | n often rusts.                                                                                    |
|     | Nar   | me the <b>two</b> substances, other than iron, that must be present for iron to rust.             |
|     | 1     |                                                                                                   |
|     | 2     |                                                                                                   |
|     |       |                                                                                                   |
| (c) | Iror  | can be obtained by heating iron(III) oxide with zinc powder.                                      |
|     |       | $Fe_2O_3 + 3Zn \rightarrow 2Fe + 3ZnO$                                                            |
|     | (i)   | What can be deduced about the reactivity of zinc from this reaction?                              |
|     |       | [1]                                                                                               |
|     | (ii)  | The ionic equation for this reaction is shown.                                                    |
|     |       | $2Fe^{3+} + 3Zn \rightarrow 2Fe + 3Zn^{2+}$                                                       |
|     |       | Identify the oxidising agent in this reaction. Explain your answer in terms of electron transfer. |
|     |       | oxidising agent                                                                                   |
|     |       | explanation                                                                                       |
|     |       | [2]                                                                                               |
|     |       | •                                                                                                 |

| 1 | (4) | \ 7inc | ovido | ic | amphoteric. |
|---|-----|--------|-------|----|-------------|
| l | u   |        | UXIUE | 15 | amphotenc.  |

| Describe <b>two</b> simple experiments to show that zinc oxide is amphoteric. |
|-------------------------------------------------------------------------------|
| Name the reagents you would use and describe the observations you would make  |

| reagent 1   |     |
|-------------|-----|
| observation |     |
| reagent 2   |     |
| observation |     |
|             | [3] |

[Total: 8]

4 Insoluble salts can be made by precipitation reactions.

A student mixed solutions of some soluble salts.

The results the student obtained are shown in the table.

|                     |                                      |                                        | second salt solution |                                        |
|---------------------|--------------------------------------|----------------------------------------|----------------------|----------------------------------------|
|                     |                                      | Co(NO <sub>3</sub> ) <sub>2</sub> (aq) | AgNO₃(aq)            | Pb(NO <sub>3</sub> ) <sub>2</sub> (aq) |
|                     | NaI(aq)                              | no change                              | yellow precipitate   | yellow precipitate                     |
| first salt solution | Na <sub>2</sub> CO <sub>3</sub> (aq) | purple precipitate                     | yellow precipitate   | white precipitate                      |
| 33.31.011           | Na <sub>2</sub> SO <sub>4</sub> (aq) | no change                              | white precipitate    | white precipitate                      |

All sodium salts are soluble in water.

Use only results from the table to answer the following questions.

| (a) | Nar  | me:                                                                                                                                                                                  |     |
|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | (i)  | an insoluble cobalt salt                                                                                                                                                             | [1] |
|     | (ii) | an insoluble yellow lead salt.                                                                                                                                                       | [1] |
| (b) | Wri  | te the chemical equation for the reaction in which silver carbonate is formed.                                                                                                       |     |
|     |      |                                                                                                                                                                                      | [2] |
| (c) | Wri  | te the ionic equation for the reaction in which lead( $\mathrm{II}$ ) iodide is formed.                                                                                              |     |
|     |      |                                                                                                                                                                                      | [2] |
| (d) |      | ueous silver nitrate produces a yellow precipitate with both iodide ions and carbonate ione en testing an unknown solution for iodide ions, the aqueous silver nitrate is acidified. | ns. |
|     | Exp  | plain why the aqueous silver nitrate is acidified.                                                                                                                                   |     |
|     |      |                                                                                                                                                                                      |     |
|     |      |                                                                                                                                                                                      | [1] |
|     |      |                                                                                                                                                                                      |     |

[Total: 7]

| 5 (a) | Part of the | structure of | synthetic | polymer | A is shown. |
|-------|-------------|--------------|-----------|---------|-------------|
|-------|-------------|--------------|-----------|---------|-------------|

| (i)            | What type of synthetic polymer is <b>A</b> ?                                                                                    |       |
|----------------|---------------------------------------------------------------------------------------------------------------------------------|-------|
| (ii)           | Deduce the empirical formula of polymer <b>A</b> .                                                                              | . [1] |
| (iii)          | Draw the structure of the monomer from which polymer <b>A</b> is made.                                                          | . [1] |
|                |                                                                                                                                 |       |
|                |                                                                                                                                 | [2]   |
| <b>(b)</b> The | e formula C <sub>4</sub> H <sub>10</sub> represents two different structural isomers.                                           |       |
| (i)            | What is meant by the term structural isomers?                                                                                   |       |
|                |                                                                                                                                 |       |
|                |                                                                                                                                 |       |
|                |                                                                                                                                 | . [2] |
| (ii)           | Draw the structures of <b>two</b> structural isomers with the formula $C_4H_{10}$ . Show all of the atoms and all of the bonds. |       |
|                |                                                                                                                                 |       |
|                |                                                                                                                                 |       |

(iii) All structural isomers of  $C_4H_{10}$  are flammable.

Write a chemical equation for the **incomplete** combustion of C<sub>4</sub>H<sub>10</sub>.

.....[2]

[Total: 10]

| 6 | Dilute hydrochloric | c acid, HCl(aq) | , reacts with ac | ueous sodium | carbonate, N | la <sub>2</sub> CO <sub>3</sub> (aq) | ). |
|---|---------------------|-----------------|------------------|--------------|--------------|--------------------------------------|----|
|---|---------------------|-----------------|------------------|--------------|--------------|--------------------------------------|----|

The chemical equation for the reaction is shown.

$$2\mathsf{HC}\mathit{l} \; + \; \mathsf{Na}_{2}\mathsf{CO}_{3} \; \rightarrow \; 2\mathsf{NaC}\mathit{l} \; + \; \mathsf{CO}_{2} \; + \; \mathsf{H}_{2}\mathsf{O}$$

(a) A 25.0 cm<sup>3</sup> portion of Na<sub>2</sub>CO<sub>3</sub>(aq) was placed in a conical flask with a few drops of a suitable indicator. It was titrated against HCl(aq) of concentration 0.180 mol/dm<sup>3</sup>.

20.0 cm<sup>3</sup> of HCl(aq) was required to reach the end-point.

Calculate the concentration of the Na<sub>2</sub>CO<sub>3</sub>(aq), in mol/dm³, using the following steps.

• Calculate the number of moles of HCl used in the titration.

..... mol

Calculate the number of moles of Na<sub>2</sub>CO<sub>3</sub> contained in the 25.0 cm<sup>3</sup> portion of Na<sub>2</sub>CO<sub>3</sub>(aq).

..... mol

Calculate the concentration of the Na<sub>2</sub>CO<sub>3</sub>(aq) in mol/dm<sup>3</sup>.

..... mol/dm<sup>3</sup> [3]

**(b)** In another experiment, the volume of carbon dioxide, CO<sub>2</sub>, produced was 48.0 cm<sup>3</sup>, measured at room temperature and pressure.

How many moles of CO<sub>2</sub> is this?

moles of  $CO_2$  = ..... mol [1]

| (c) | eled | sample of concentrated hydrobromic acid, HBr(aq), was electrolysed use<br>ectrodes.<br>e concentration of the hydrobromic acid was 8.89 mol/dm³. | sing platinum |
|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|     | (i)  | Calculate the concentration of the HBr(aq) in g/dm³.                                                                                             |               |
|     |      | concentration of HBr(aq) =                                                                                                                       | g/dm³ [1]     |
|     | (ii) | Explain why concentrated HBr(aq) can conduct electricity.                                                                                        |               |
|     |      |                                                                                                                                                  |               |
| (   | iii) | Magnesium is <b>not</b> a suitable material from which to make the electrodes.                                                                   | [2]           |
| '   | ,    | Explain why.                                                                                                                                     |               |
|     |      |                                                                                                                                                  |               |
| (   | iv)  | Predict the product formed at the anode when concentrated HBr(aq) is elec                                                                        | trolysed.     |
|     | (v)  | Write the ionic half-equation for the reaction occurring at the cathode.                                                                         | [1]           |
|     |      |                                                                                                                                                  | [2]           |
|     |      |                                                                                                                                                  | [Total: 11]   |
|     |      |                                                                                                                                                  |               |
|     |      |                                                                                                                                                  |               |
|     |      |                                                                                                                                                  |               |

- **7** This question is about ethanol.
  - (a) Ethanol that is suitable for use as a fuel can be manufactured from sugars such as glucose,  $C_6H_{12}O_6$ , by a two-step process.

Describe how this can be done. In your answer, include:

| • | an equation | for the | reaction in | n which | ethanol | is formed |
|---|-------------|---------|-------------|---------|---------|-----------|
|---|-------------|---------|-------------|---------|---------|-----------|

- the essential conditions for the reaction in which ethanol is formed
- the name of the process used to obtain ethanol that is pure enough to use as a fuel from the reaction mixture.

**(b)** The equation for the complete combustion of ethanol is shown.

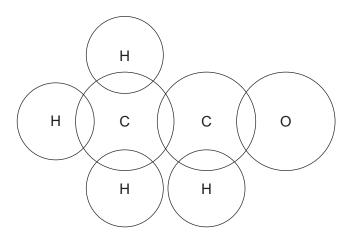
Use the bond energies in the table to calculate the energy change, in kJ/mol, for the complete combustion of ethanol.

| bond | bond energy<br>in kJ/mol |
|------|--------------------------|
| C–C  | 347                      |
| C–H  | 413                      |
| C-O  | 358                      |
| C=O  | 805                      |
| О–Н  | 464                      |
| O=O  | 498                      |

Energy needed to break bonds.

Energy released when bonds are formed.

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | k | ΄. | J |
|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|---|----|---|
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |    |   |


• Energy change for the complete combustion of ethanol.

| (c) | Ethanol can be oxidised by hydrogen peroxide to form ethanal | , CH <sub>3</sub> CHO. | A catalyst for | · this |
|-----|--------------------------------------------------------------|------------------------|----------------|--------|
|     | reaction is Fe <sup>3+</sup> .                               | Ü                      |                |        |

| (i) | What is meant by the term <i>catalyst</i> ? |  |
|-----|---------------------------------------------|--|
|     |                                             |  |

(ii) The structure of ethanal is shown.

Complete the dot-and-cross diagram to show the electron arrangement in a molecule of ethanal. Show outer shell electrons only.



[3]

(iii) The table gives the boiling points of ethanal and ethanol.

| substance | boiling point/°C |
|-----------|------------------|
| ethanal   | 20               |
| ethanol   | 78               |

| In terms of attractive point than ethanol. | n particles, s | uggest why | ethanal h | as a low | er boiling |
|--------------------------------------------|----------------|------------|-----------|----------|------------|
|                                            | <br>           |            |           |          |            |
|                                            | <br>           |            |           |          | [1]        |

(d) Ethene gas reacts with steam to form gaseous ethanol.

$$C_2H_4(g) + H_2O(g) \rightleftharpoons CH_3CH_2OH(g)$$

The reaction can reach a position of equilibrium. The forward reaction is exothermic.

| (i)   | State and explain the effect of increasing the pressure on the <b>position of equilibrium</b> . All other conditions are unchanged.    |
|-------|----------------------------------------------------------------------------------------------------------------------------------------|
|       |                                                                                                                                        |
|       | rei                                                                                                                                    |
| (ii)  | Increasing the pressure of a gas increases its concentration.                                                                          |
|       | State and explain the effect of increasing the pressure on the <b>rate</b> of the reaction. All other conditions are unchanged.        |
|       |                                                                                                                                        |
|       |                                                                                                                                        |
|       | [2]                                                                                                                                    |
| (iii) | State and explain the effect of increasing the temperature on the <b>position of equilibrium</b> . All other conditions are unchanged. |
|       |                                                                                                                                        |
|       |                                                                                                                                        |
|       | [2]                                                                                                                                    |
|       | [Total: 20]                                                                                                                            |

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

The Periodic Table of Elements

| He lium   He l  | X X X X X X X X X X X X X X X X X X X                                             |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---|
| VII   9   9   19   19   19   19   19   19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I lodine 127 At astatine -                                                        |   |
| Selenium 32 2 34 7 39 7 39 7 39 7 39 7 39 7 39 7 39 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Te tellurium 128 84 Po Polonium 116 LV Ilvermorium Ilvermorium                    | ı |
| N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sb antimony 122 83 83 Bismuth 209                                                 |   |
| Garbon (28 8 8 8 8 8 9 8 9 8 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SD<br>tin<br>119<br>82<br>Pb<br>lead<br>207<br>114<br>Fl                          | ı |
| B B boron 111 A 1 3 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | In indium 115 81 T 7 T 204                                                        |   |
| 30 Sn Zinc Zinc 85 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cd cadmium 112 80 Hg mercury 201 Ch           | ı |
| 29<br>Cu<br>copper<br>64<br>47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ag silver 108 79 Au gold 197 111 Rg roentgenium                                   | ı |
| 28 Nickel 50 50 50 50 50 50 50 50 50 50 50 50 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pd Pd Palladium 106 Pt Pt Pt Palladium 106 Pt | ı |
| Group  27 Co cobatt 59 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rh rhodium 103 77 Ir indium 192 Mt melinerium melinerium                          | ı |
| L T 60 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ruthenium 101 76 OS OSmium 190 108 HS                                             | ı |
| 25 Mn manganese 55 54 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | technetium 75 Re rhentium 186 107 Bh bohritum                                     | I |
| bool sss chromium stromium stromium stromium stromium stromium stromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mo<br>molybdenum<br>96<br>74<br>W<br>tungsten<br>184<br>106<br>Sg                 | ı |
| Atomic number atomic number name name relative atomic mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Nb noblium 93 173 173 181 105 0b dubnium dubnium                                  | ı |
| ato                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Zrconium 91 72 Hf hafnium 178 8 Rf Rf utherfordium                                | ı |
| 21<br>Sc<br>scandium<br>45<br>39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 ythrium 89 89 57–71 lanthanoids 89–103 actinoids                                |   |
| ### Page   Page | Srontium strontium 88 88 Barlum 137 77 Ra                                         | ı |
| Li   Li   Li   Li   Li   Li   Li   Li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rb rubdium 85 SS CS CS Caesium 133 R7 Fr francium                                 | ı |

| 71 | P  | Iutetium   | 175 | 103 | ۲         | lawrencium  | ı   |
|----|----|------------|-----|-----|-----------|-------------|-----|
| 70 | Υp | ytterbium  | 173 | 102 | 8         | nobelium    | ı   |
| 69 | Tm | thulium    | 169 | 101 | Md        | mendelevium | I   |
| 89 | щ  | erbium     | 167 | 100 | Fm        | fermium     | 1   |
| 29 | 운  | holmium    | 165 | 66  | Es        | einsteinium | I   |
| 99 | ۵  | dysprosium | 163 | 86  | ర         | californium | I   |
| 65 | Д  | terbium    | 159 | 26  | BK        | berkelium   | 1   |
| 64 | Gd | gadolinium | 157 | 96  | Cm        | curium      | 1   |
| 63 | En | europium   | 152 | 96  | Am        | americium   | I   |
| 62 | Sm | samarium   | 150 | 94  | Pn        | plutonium   | ı   |
| 61 | Pm | promethium | ı   | 93  | ď         | neptunium   | ı   |
| 09 | PZ | neodymium  | 144 | 92  | $\supset$ | uranium     | 238 |
| 59 | Ą  |            |     |     |           |             |     |
| 28 | Ce | cerium     | 140 | 06  | Ļ         | thorium     | 232 |
| 22 | La | lanthanum  | 139 | 88  | Ac        | actinium    | ı   |

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).