

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME							
CENTRE NUMBER		CANDIDATE NUMBER					
CHEMISTRY			0620/33				
Paper 3 Theory	(Core)	October/November 2017					
			1 hour 15 minutes				
Candidates ans	swer on the Question Paper.						
No Additional M	No Additional Materials are required.						

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

A copy of the Periodic Table is printed on page 16.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

This document consists of 13 printed pages and 3 blank pages.

1 The diagram shows the structures of five substances, A, B, C, D and E.

Α	В	С	D	E
0 S 0	Cl^{-} C	N ∭ N	H N H	O=C=0

Answer the following questions using only the structures in the diagram. Each structure may be used once, more than once or not at all.

(a)	Which	structure,	Α.	В.	C.	D	or	Ε.
(u)	VVIIICII	Structure,	Λ,	Β,	Ο,		Oi	┗,

(i)	is a compound which is used as a fertiliser,	[1]			
(ii)	is a diatomic molecule,	[1]			
(iii)	contains chloride ions,	[1]			
(iv)	is a gas which turns damp red litmus paper blue,	[1]			
(v)	is an element?	[1]			
(b) Structure A is sulfur dioxide.					

(/					
	Sulfur	dioxide	is an	atmospheric	pollutant.

(i) State **one** source of sulfur dioxide.

			- 11

(ii)	Give one adverse effect of sulfur dioxide on health.	
		[1]

(c) An isotope of nitrogen is represented by the symbol ¹⁵/₇N.

Deduce the number of protons, neutrons and electrons in this isotope of nitrogen.

number of protons

number of neutrons

number of electrons

[Total: 10]

2

The atmosphere of the planet Venus contains 96.4% carbon dioxide, 3.5% nitrogen and small

(a)	Describe how Venus' atmosphere differs from the Earth's atmosphere. Give three differences.	
	1	
	2	
	3	
		[3]
(b)	Describe a test for carbon dioxide.	
	test	
	result	
/- \	Vanue' stress have also contains and a security of water and server	[2]
(C)	Venus' atmosphere also contains small amounts of water and argon.	
	(i) Water is a covalent compound.	
	 Complete the diagram to show the arrangement of electrons in a molecule of water, the symbols of the atoms present. 	
	Show outer shell electrons only.	
		[2]
	(ii) The melting point of argon is –189 °C. The boiling point of argon is –186 °C.	
	What is the physical state of argon at –200 °C? Explain your answer.	
		[2]
		८

	(iii)	Argon is unreactive.						
		Explain why argon is unreactive in terms of its electronic structure.						
		[1]					
(d)		uds of sulfuric acid are present in Venus' atmosphere. Turic acid reacts with magnesium carbonate.						
		$H_2SO_4 + MgCO_3 \rightarrow MgSO_4 + CO_2 + H_2O$						
	(i)	Write the word equation for this reaction.						
		[2	2]					
	(ii)	Calculate the relative molecular mass of sulfuric acid, H ₂ SO ₄ . Use your Periodic Table to help you.						
		coo your romodio nabio to map you.						
		relative molecular mass = [2	2]					
(e)	Sulf	ur dioxide is found in the atmospheres of both Venus and the Earth.						
	(i)	State one use of sulfur dioxide.						
		[1]					
	(ii)	Sulfur dioxide dissolves in water to form an acidic solution.						
		Which one of the following pH values is acidic? Put a circle around the correct answer.						
		pH2 pH7 pH9 pH14	47					
			1]					
		[Total: 16	ַוֹנ					

3 The list shows some of the compounds used to manufacture ink.

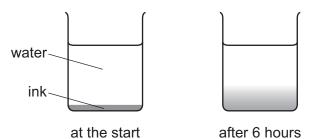
calcium carbonate
ethanoic acid
iron(II) sulfate
potassium dichromate(VI)
sodium sulfate
sulfuric acid

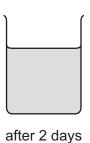
		sodium suilate	
		sulfuric acid	
(a)	Wh	ich compound is present in limestone?	
			[1]
(b)	Нус	drated iron(II) sulfate is heated gently.	
		$FeSO_4.7H_2O \rightarrow FeSO_4 + 7H_2O$	
	(i)	Describe what you would see when a test-tube containing a small amount hydrated iron(Π) sulfate is heated gently.	O
			[1]
	(ii)	Describe a test for aqueous iron(II) ions.	
		test	
		result	[2]
(c)	Iror	$n({ m II})$ sulfate can be prepared by reacting an excess of iron with dilute sulfuric acid.	
	(i)	Complete the chemical equation for this reaction.	
		Fe + $H_2SO_4 \rightarrow FeSO_4 + \dots$	[1]
	(ii)	Describe how you could remove the excess iron from the mixture formed.	
			[1]

(d) ((i)	Complete the structure	of ethanoic acid	o show all of the	atoms and all of the	he bonds.
10	,	,	Complete the structure	or curarion acid	o show an or the	atomo ana an or t	ric borida.

റവ	

(ii)	Give one of	bservation v	vhen aque	ous ethano	ic acid reac	ts with magne	sium.


.....[1]


(e) Black ink contains a mixture of different coloured dyes.

Draw a labelled diagram of the apparatus used to separate these different coloured dyes by chromatography.

[3]

(f) Blue ink was placed at the bottom of a beaker containing water. After 2 days, a blue colour had spread throughout the beaker.

Explain these observations using the kinetic particle model.

[Total: 15]

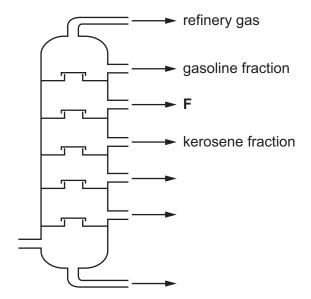
4 The table shows the properties of four substances.

substance	boiling point	electrical conductivity of solid	electrical conductivity when molten	density in g/cm³
aluminium	high	conducts	conducts	2.70
diamond				3.51
potassium bromide	high	does not conduct	conducts	2.75
sulfur	low	does not conduct		2.07

(a)	Con	implete the table to show the electrical conductivity of solid diamond and molten sulfur.	[2]
(b)	Give	e one piece of evidence from the table that shows that sulfur is a simple covalent substanc	ce.
			[1]
(c)	Wha	at information in the table shows that potassium bromide is an ionic compound?	
(d)	(i)	State one property of aluminium given in the table which makes it suitable for maki aircraft.	ng
			[1]
	(ii)	Aluminium oxide is obtained from the ore bauxite.	
		What method is used to extract aluminium from aluminium oxide?	
			[1]
(e)	Mol	ten potassium bromide can be electrolysed.	
	Pre	dict the products of this electrolysis at	
	the	positive electrode (anode),	
	the	negative electrode (cathode).	
			[2]

(f)	(i)	Which two statements describe the structure and Tick two boxes.	bonding in diamond?
		Diamond has ionic bonds.	
		Diamond has a giant structure.	
		Diamond is a simple molecule.	
		Diamond has covalent bonds.	[11]
	(!!\	Oive and was of dispersed	[1]
	(ii)	Give one use of diamond.	
			[1]
			[Total: 11]

5


ca	arbon dioxide nitrogen dioxide potassium oxide sulfur trioxide	
(ii)	Which one of these oxides is a basic oxide? Put a circle around the correct answer.	ני]
(i)		[4]
(d) Ir	on from the blast furnace is converted into steel using oxygen and basic oxides.	
		[2]
(c) S	tate the conditions needed for iron to rust.	
	2	[2
	1	
	Give two physical properties that are typical of transition elements.	
(ii)) Lead is a metal in Group IV. Iron is a transition element.	
		[1]
(i)	How does this equation show that the lead(II) oxide is reduced?	
	PbO + C \rightarrow Pb + CO	
(b) T	he lead(II) oxide produced is then reduced with carbon.	
	2PbS + $O_2 \rightarrow 2PbO +SO_2$	[2]
В	alance the chemical equation for this reaction.	
(a) T	he ore is first heated in air.	
Lead i	is extracted from an ore which contains lead(II) sulfide.	

[2]

Explain your answer.

(e)	Ste	el is an alloy.
	Wh	at is meant by the term <i>alloy</i> ?
		[2]
(f)	(i)	Give one common use of mild steel.
	(ii)	Give one common use of stainless steel.
		[1]
		[Total: 14]

6 The diagram shows a fractionating column used for the fractional distillation of petroleum.

- (a) On the diagram, write
 - the letter **X** to show where the temperature in the fractionating column is highest,
 - the letter **B** to show where bitumen is removed from the fractionating column.

[2]

(b) Give the name of the fraction labelled ${\bf F}$ in the diagram.

|--|

- (c) Refinery gas contains methane, ethane and propane.
 - (i) Draw the structure of a molecule of ethane showing all of the atoms and all of the bonds.

[1]

(ii) Methane can be converted to hydrogen by reaction with steam.

Balance the chemical equation for this reaction.

$$CH_4 + H_2O \rightarrow CO + \dots H_2$$
 [1]

(iii) This reaction is endothermic.

What is meant by the term *endothermic*?

(d)	Sor	me petroleum f	ractions are c	racked to form diffe	erent hydrocarbo	ons.
	Des	scribe the proc	ess of crackin	g.		
	In y •	-	•	e term <i>cracking</i> , d to crack hydrocar	bons.	
						[4]
(e)	The	e table shows s	some propertie	es of four alkanes.		
()				T		1
			alkane	number of carbon atoms in one molecule	boiling point /°C	
			methane	1	-164	
			ethane	2	-88	
			propane	3		
			butane	4	0	
	(i)	How does th increases?	e boiling poir	nt change as the	number of carbo	on atoms in one molecule
						[1]
	(ii)	Predict the bo	oiling point of p	oropane.		
						[1]
(iii)	Describe the	arrangement	and separation of t	he molecules in	liquid butane.
		arrangement				
		separation				
						[2]
						[Total: 14]

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of Elements

	=	² He	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	52	Xe	xenon 131	98	R	radon			
	₹			6	ш	fluorine 19	17	Cl	chlorine 35.5	35	ä	bromine 80	53	н	iodine 127	85	Ąŧ	astatine			
	5			80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>e</u>	tellurium 128	84	Ъ	molod –	116		livemorium -
	>			7	z	nitrogen 14	15	۵	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	Ξ	bismuth 209			
	≥			9	ပ	carbon 12	41	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pp	lead 207	114	Ll	flerovium -
	=			2	М	boron 11	13	ΡĮ	aluminium 27	31	Ga	gallium 70	49	In	indium 115	84	lΤ	thallium 204			
										30	Zu	zinc 65	48	g	cadmium 112	80	Нg	mercury 201	112	ပ်	copernicium
										29	Cn	copper 64	47	Ag	silver 108	79	Αn	gold 197	111	Rg	roentgenium -
Group	,									28	Z	nickel 59	46	Pd	palladium 106	78	£	platinum 195	110	Ds	darmstadtium -
Gr										27	ပိ	cobalt 59	45	牊	rhodium 103	77	'n	iridium 192	109	¥	meitnerium -
		- I	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	92	Os	osmium 190	108	Η	hassium
										25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium
					pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≯	tungsten 184	106	Sg	seaborgium -
			Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	g	niobium 93	73	д	tantalum 181	105	Вb	dubnium —
					atc	- Le				22	i=	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	弘	rutherfordium —
										21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids	
	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Š	strontium 88	26	Ba	barium 137	88	Ra	radium
	_			က	:=	lithium 7	7	Na	sodium 23	19	¥	potassium 39	37	&	rubidium 85	55	S	caesium 133	87	ъ́	francium

			_			
71	Γn	lutetium 175	103	۲	lawrencium	I
70	Υp	ytterbium 173	102	Š	nobelium	I
69	T	thulium 169	101	Md	mendelevium	ı
89	Щ	erbium 167	100	Fm	fermium	ı
29	웃	holmium 165	66	Es	einsteinium	ı
99	Dy	dysprosium 163	86	ర	californium	ı
65	Tp	terbium 159	26	Ř	berkelium	ı
64	В	gadolinium 157	96	CB	curium	ı
63	En	europium 152	92	Am	americium	ı
62	Sm	samarium 150	94	Pu	plutonium	ı
61	Pm	promethium —	93	d	neptunium	ı
09	PΝ	neodymium 144	92	\supset	uranium	238
69	Ą	praseodymium 141	91	Ра	protactinium	231
28	Ce	cerium 140	06	드	thorium	232
22	Гa	lanthanum 139	88	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is $24\,\mathrm{dm^3}$ at room temperature and pressure (r.t.p.).