

## Cambridge IGCSE<sup>™</sup>

| CANDIDATE<br>NAME |  |  |                     |  |  |
|-------------------|--|--|---------------------|--|--|
| CENTRE<br>NUMBER  |  |  | CANDIDATE<br>NUMBER |  |  |

\*717364861

CHEMISTRY 0620/31

Paper 3 Theory (Core)

May/June 2023

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

## **INSTRUCTIONS**

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

## **INFORMATION**

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [ ].
- The Periodic Table is printed in the question paper.

1 Fig. 1.1 shows part of the Periodic Table.

| I  | Ш  |  |  |    |  |    | Ш  | IV | V | VI | VII | VIII |
|----|----|--|--|----|--|----|----|----|---|----|-----|------|
|    |    |  |  | Н  |  |    |    |    |   |    |     | Не   |
|    |    |  |  |    |  |    |    | С  | N | 0  |     |      |
| Na | Mg |  |  |    |  |    | Αl |    |   |    | Cl  |      |
| K  | Ca |  |  | Fe |  | Cu |    |    |   |    | Br  |      |
|    |    |  |  |    |  |    |    |    |   |    | I   |      |

Fig. 1.1

Answer the following questions using only the elements in Fig. 1.1. Each symbol of the element may be used once, more than once or not at all.

Give the symbol of the element that:

| forms 78% by volume of clean, dry air                                               |                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                     | [1]                                                                                                                                                                                                                                                                                         |
| has an atom with a complete outer electron shell                                    |                                                                                                                                                                                                                                                                                             |
|                                                                                     | [1]                                                                                                                                                                                                                                                                                         |
| has an atom with five occupied electron shells                                      |                                                                                                                                                                                                                                                                                             |
|                                                                                     | [1]                                                                                                                                                                                                                                                                                         |
| forms an ion with a charge of 2–                                                    |                                                                                                                                                                                                                                                                                             |
|                                                                                     | [1]                                                                                                                                                                                                                                                                                         |
| forms an ion that gives a green precipitate on addition of aqueous sodium hydroxide |                                                                                                                                                                                                                                                                                             |
|                                                                                     | [1]                                                                                                                                                                                                                                                                                         |
| is used in food containers because of its resistance to corrosion.                  |                                                                                                                                                                                                                                                                                             |
|                                                                                     | [1]                                                                                                                                                                                                                                                                                         |
|                                                                                     | has an atom with a complete outer electron shell  has an atom with five occupied electron shells  forms an ion with a charge of 2—  forms an ion that gives a green precipitate on addition of aqueous sodium hydroxide  is used in food containers because of its resistance to corrosion. |

[Total: 6]

**2** (a) Table 2.1 shows some properties of the halogens.

Table 2.1

| halogen  | melting point<br>in °C | boiling point<br>in °C | density at room<br>temperature and<br>pressure in g/cm³ |
|----------|------------------------|------------------------|---------------------------------------------------------|
| fluorine | -220                   | -188                   | 0.0016                                                  |
| chlorine | -101                   | -35                    | 0.0032                                                  |
| bromine  |                        | +59                    | 3.1                                                     |
| iodine   | +114                   | +184                   |                                                         |

Use the information in Table 2.1 to predict:

| US             | e the information | n in Table 2.1 to pre                     | aict:                              |                         |        |
|----------------|-------------------|-------------------------------------------|------------------------------------|-------------------------|--------|
| (i)            | the melting po    | int of bromine                            |                                    |                         |        |
|                |                   |                                           |                                    |                         | [1]    |
| (ii)           | the density of    | iodine at room temp                       | erature and pressure               |                         |        |
|                |                   |                                           |                                    |                         | [1]    |
| (iii)          | the physical st   | ate of chlorine at –1                     | 0°C. Give a reason f               | or your answer.         |        |
|                | physical state    |                                           |                                    |                         |        |
|                | reason            |                                           |                                    |                         |        |
|                |                   |                                           |                                    |                         | [2]    |
|                |                   |                                           |                                    |                         | [-]    |
| <b>(b)</b> The | e equation for th | e reaction of aqueo                       | us chlorine with aque              | ous potassium iodide is | shown. |
|                |                   | $Cl_2$ + 2h                               | $XI \rightarrow I_2 + 2KCl$        |                         |        |
| (i)            |                   | ord which best desc<br>around your chosen | ribes this type of cher<br>answer. | mical reaction.         |        |
|                | addition          | displacement                              | neutralisation                     | polymerisation          | [1]    |
| (ii)           | Explain why a     | queous iodine does                        | not react with aqueo               | us potassium chloride.  |        |
|                |                   |                                           |                                    |                         | [1]    |

(c) Complete the diagram in Fig. 2.1 to show the electronic configuration of a chlorine atom.

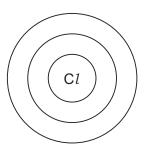



Fig. 2.1

| (d) | Describe | а | test | for | chlorine. |
|-----|----------|---|------|-----|-----------|
|-----|----------|---|------|-----|-----------|

| test         |     |
|--------------|-----|
| observations |     |
|              | [2] |

[Total: 9]

3 (a) Water from natural sources contains dissolved gases.

> Choose from the list, the gas that is essential for aquatic life. Draw a circle around your chosen answer.

|     |      |                              | argon               | hydrogen          | nitrogen         | oxygen                      | [1]     |
|-----|------|------------------------------|---------------------|-------------------|------------------|-----------------------------|---------|
| (b) |      | uted water in the phosphates | •                   | harmful substan   | ces such as m    | etal compounds, plastics, n | itrates |
|     | (i)  | Name one                     | <b>other</b> harmfo | ul substance whic | ch is present in | polluted water.             |         |
|     |      |                              |                     |                   |                  |                             | [1]     |
|     | (ii) | State why r                  | nitrates are h      | armful to aquatio | : life.          |                             |         |
|     |      |                              |                     |                   |                  |                             | [1]     |

(c) Table 3.1 shows the masses of ions, in mg, present in a 1000 cm<sup>3</sup> sample of polluted water.

Table 3.1

| name of ion       | formula<br>of ion              | mass of ion present<br>in mg/1000 cm³<br>of polluted water |
|-------------------|--------------------------------|------------------------------------------------------------|
|                   | NH <sub>4</sub> <sup>+</sup>   | 0.5                                                        |
| calcium           | Ca <sup>2+</sup>               | 2.2                                                        |
| chloride          | C <i>l</i> −                   | 2.5                                                        |
| hydrogencarbonate | HCO <sub>3</sub> -             | 12.0                                                       |
| magnesium         | Mg <sup>2+</sup>               | 0.8                                                        |
| nitrate           | NO <sub>3</sub> -              | 0.4                                                        |
| potassium         | K⁺                             | 8.3                                                        |
| silicate          | SiO <sub>3</sub> <sup>2-</sup> | 8.0                                                        |
| sodium            | Na⁺                            | 10.2                                                       |
| sulfate           | SO <sub>4</sub> <sup>2-</sup>  | 0.2                                                        |
| tin(II)           | Sn <sup>2+</sup>               | 0.4                                                        |

Answer these questions using information from Table 3.1.

| (i)  | Name the negative ion present in the highest concentration. |     |
|------|-------------------------------------------------------------|-----|
|      |                                                             | [1] |
| (ii) | State the name of the NH <sub>4</sub> <sup>+</sup> ion.     |     |
|      |                                                             | [1] |

(iii) Calculate the mass of calcium ions present in 200 cm³ of polluted water.

|     |      | mass = mg                                                                            | [1] |
|-----|------|--------------------------------------------------------------------------------------|-----|
| (d) | Cop  | $oper(\mathrm{II})$ sulfate can be used to test for the presence of water.           |     |
|     |      | $CuSO_4(s) + 5H_2O(I) \rightleftharpoons CuSO_4 \cdot 5H_2O(s)$                      |     |
|     |      | anhydrous hydrated copper(II) sulfate copper(II) sulfate                             |     |
|     | (i)  | State the meaning of the term hydrated.                                              |     |
|     |      |                                                                                      | [1] |
|     | (ii) | Describe how hydrated copper(II) sulfate is changed to anhydrous copper(II) sulfate. |     |
|     |      |                                                                                      | [1] |

2Na + ..... $H_2O \rightarrow$  2NaOH + .....

[2]

[Total: 10]

(e) Complete the symbol equation for the reaction of sodium with water.

4

| Thi | s question is about sulfur and compounds of sulfur.                                                                                     |     |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------|-----|
| (a) | Sulfur has several isotopes.                                                                                                            |     |
|     | Define the term isotopes.                                                                                                               |     |
|     |                                                                                                                                         | [2] |
| (b) | Deduce the number of protons, neutrons and electrons in the sulfide ion shown.                                                          |     |
|     | <sup>36</sup> <sub>16</sub> S <sup>2-</sup>                                                                                             |     |
|     | number of protons                                                                                                                       |     |
|     | number of neutrons                                                                                                                      |     |
|     | number of electrons                                                                                                                     | [3] |
|     |                                                                                                                                         | [0] |
| (c) | Sulfur burns in oxygen to produce sulfur dioxide.                                                                                       |     |
|     | Fig. 4.1 shows an incomplete reaction pathway diagram for this reaction.                                                                |     |
|     | energy                                                                                                                                  |     |
|     | progress of reaction                                                                                                                    |     |
|     | Fig. 4.1                                                                                                                                |     |
|     | <ul> <li>(i) Complete Fig. 4.1 by writing these formulae on the diagram:</li> <li>S + O<sub>2</sub></li> <li>SO<sub>2</sub>.</li> </ul> | [1] |
|     | (ii) Explain how Fig. 4.1 shows that the reaction is exothermic.                                                                        |     |
|     |                                                                                                                                         |     |
|     |                                                                                                                                         | [1] |
| (   | (iii) Complete this sentence about an exothermic reaction using a word from the list.                                                   |     |
|     | products reactants sulfur surroundings                                                                                                  |     |
|     | An exothermic reaction transfers thermal energy to the                                                                                  | [1] |

(d) Fig. 4.2 shows the apparatus used for the electrolysis of dilute sulfuric acid using graphite electrodes.



Fig. 4.2


(i) Label Fig. 4.2 to show:

the electrolyte.

- the cathode

| (ii) | Name the products and state the observations at the positive and negative electrodes. |
|------|---------------------------------------------------------------------------------------|
|      | product at the positive electrode                                                     |
|      |                                                                                       |
|      | observations at the positive electrode                                                |
|      |                                                                                       |
|      | product at the negative electrode                                                     |
|      | observations at the negative electrode                                                |
|      | observations at the negative electrode                                                |

(e) Complete the word equation for the reaction of dilute sulfuric acid with sodium carbonate.



[3]

[4]

[2]

(f) A few drops of thymolphthalein indicator are added to dilute sulfuric acid.

State the colour of the solution.

.....[1]

[Total: 18]

5

| This question is about                     | metals.            |                                |                                |
|--------------------------------------------|--------------------|--------------------------------|--------------------------------|
| (a) Iron is a transition                   | element. Potassi   | um is an element in Group I o  | f the Periodic Table.          |
| State <b>two</b> differen                  | ces in the physica | al properties of iron compared | to potassium.                  |
|                                            |                    |                                | ·                              |
|                                            |                    |                                |                                |
| 2                                          |                    |                                | [2]                            |
| (b) Carbon is used to                      | extract iron from  | iron ore in a blast furnace.   |                                |
| State <b>two</b> uses of                   | carbon in the ext  | raction process.               |                                |
| 1                                          |                    |                                |                                |
|                                            |                    |                                |                                |
| 2                                          |                    |                                | [2]                            |
| (c) Steel is an alloy of                   | iron.              |                                |                                |
| (i) State the mea                          | ning of the term a | alloy.                         |                                |
|                                            |                    |                                |                                |
|                                            |                    |                                | [1]                            |
|                                            |                    |                                | [1]                            |
|                                            |                    | ul than pure metals.           |                                |
|                                            |                    |                                |                                |
| (d) Table 5.1 shows th acid of the same of |                    | ade when four different metals | react with dilute hydrochloric |
|                                            |                    | Table 5.1                      |                                |
|                                            | metal              | observations                   | 7                              |
|                                            | iron               | bubbles form slowly            | -                              |
|                                            | lead               | no bubbles formed              | _                              |
|                                            | magnesium          | bubbles form rapidly           |                                |
|                                            | nickel             | bubbles form very slowly       |                                |
| Put the four metals<br>Put the least react |                    | reactivity.                    |                                |
| least reactive —                           |                    |                                | → most reactive                |
|                                            |                    |                                |                                |
|                                            |                    |                                | [2]                            |

**6 (a)** A student investigates the reaction of small pieces of zinc of the same mass and size with three different concentrations of dilute hydrochloric acid in the presence of a catalyst.

The three concentrations of dilute hydrochloric acid are:

- 1.0 mol/dm³
- 1.5 mol/dm<sup>3</sup>
- 2.0 mol/dm<sup>3</sup>.

All other conditions stay the same.

Table 6.1 shows the time taken for each reaction to finish.

Table 6.1

| concentration of hydrochloric acid in mol/dm³ | time taken for the reaction to finish in s |
|-----------------------------------------------|--------------------------------------------|
|                                               | 200                                        |
|                                               | 100                                        |
|                                               | 150                                        |

|     | (i)  | Complete Table 6.1 by                           | writing the concentra | ions of hydrochlori  | c acid in the  | first column.<br>[1]    |
|-----|------|-------------------------------------------------|-----------------------|----------------------|----------------|-------------------------|
|     | (ii) | Describe the effect on hydrochloric acid with n |                       | he zinc to finish re | eacting with   | 2.0 mol/dm <sup>3</sup> |
|     |      | All other conditions stay                       | the same.             |                      |                |                         |
|     |      |                                                 |                       |                      |                | [1]                     |
| (1  | iii) | Describe the effect on hydrochloric acid when   |                       |                      | -              | 2.0 mol/dm <sup>3</sup> |
|     |      | All other conditions stay                       | the same.             |                      |                |                         |
|     |      |                                                 |                       |                      |                | [1]                     |
| (b) | Cry  | stals of zinc chloride can                      | be prepared by react  | ing excess zinc wit  | h dilute hydro | ochloric acid.          |
|     | Cho  | oose from the list, the met                     | thod used to separate | the unreacted zinc   | from the reac  | tion mixture.           |
|     | Dra  | w a circle around your cl                       | nosen answer.         |                      |                |                         |
|     |      | chromatography                                  | crystallisation       | evaporation          | filtration     | [1]                     |

| (c) | ) Zinc chloride is soluble in water.                   |            |  |  |  |  |  |  |  |  |
|-----|--------------------------------------------------------|------------|--|--|--|--|--|--|--|--|
|     | Choose one <b>other</b> compound that is soluble in wa | ter.       |  |  |  |  |  |  |  |  |
|     | Tick (✓) one box.                                      |            |  |  |  |  |  |  |  |  |
|     | calcium carbonate                                      |            |  |  |  |  |  |  |  |  |
|     | lead(II) chloride                                      |            |  |  |  |  |  |  |  |  |
|     | silver chloride                                        |            |  |  |  |  |  |  |  |  |
|     | sodium nitrate                                         | [1]        |  |  |  |  |  |  |  |  |
|     |                                                        | [Total: 5] |  |  |  |  |  |  |  |  |

7 (a) Fig. 7.1 shows the displayed formula of mesaconic acid.

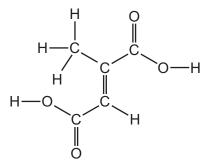



Fig. 7.1

|     | (i)  | On Fig. 7.1 draw a circle around <b>one</b> carboxylic acid functional group.                     | [1] |
|-----|------|---------------------------------------------------------------------------------------------------|-----|
|     | (ii) | Deduce the molecular formula of mesaconic acid.                                                   |     |
|     |      |                                                                                                   | [1] |
| (   | iii) | Mesaconic acid is a colourless compound.                                                          |     |
|     |      | Describe the colour change when excess mesaconic acid is added to aqueous bromin                  | e.  |
|     |      | from to                                                                                           | [2] |
| (b) |      | anoic acid belongs to the homologous series of carboxylic acids.  ine the term homologous series. |     |
| (c) | Cor  | mplete the word equation for the reaction of ethanoic acid with magnesium.                        |     |

[2]

© UCLES 2023 0620/31/M/J/23

magnesium

ethanoic

acid

(d) Ethanoic acid reacts with ethanol.

The organic product has the molecular formula  $\mathrm{C_4H_8O_2}.$ 

Complete Table 7.1 to calculate the relative molecular mass of  $C_4H_8O_2$ .

Table 7.1

| atom     | number of atoms | relative<br>atomic mass |             |
|----------|-----------------|-------------------------|-------------|
| carbon   | 4               | 12                      | 4 × 12 = 48 |
| hydrogen |                 | 1                       |             |
| oxygen   |                 | 16                      |             |

|     | relative molecular mass =                                                        | [2] |
|-----|----------------------------------------------------------------------------------|-----|
| (e) | Ethanol can be manufactured by fermentation.                                     |     |
|     | Complete the word equation for one <b>other</b> method of manufacturing ethanol. |     |
|     | $	o$ ethanol                                                                     | [2] |
|     | [Total:                                                                          | 12] |

8

| Th  | is qu | estion is about nitrogen and compounds of nitrogen.                            |     |
|-----|-------|--------------------------------------------------------------------------------|-----|
| (a) | Nitı  | rogen is a non-metal. Nitrogen is a poor electrical conductor.                 |     |
|     | De    | scribe two <b>other</b> physical properties which are typical of non-metals.   |     |
|     | 1     |                                                                                |     |
|     | 2     |                                                                                |     |
|     |       |                                                                                | [2] |
| (b) | ) Oxi | ides of nitrogen are air pollutants which contribute to acid rain.             |     |
|     | (i)   | State <b>one</b> source of oxides of nitrogen in the air.                      |     |
|     |       |                                                                                | [1] |
|     | (ii)  | State one <b>other</b> adverse effect of oxides of nitrogen.                   |     |
|     |       |                                                                                | [1] |
| (c) | ) Am  | monia is a simple molecule with covalent bonds.                                |     |
|     | (i)   | Describe a covalent bond.                                                      |     |
|     |       |                                                                                |     |
|     |       |                                                                                | [2] |
|     | (ii)  | Complete Fig. 8.1 to show the dot-and-cross diagram for a molecule of ammonia. |     |




Fig. 8.1

[2]

© UCLES 2023 0620/31/M/J/23

Show outer shell electrons only.

(iii) Aqueous ammonia is alkaline.

Choose from the list, the pH value that is alkaline.

Draw a circle around your chosen answer.

pH 1 pH 5 pH 7 pH 10 [1]

(iv) Aqueous ammonia releases ammonia gas.

Ammonia gas turns damp red litmus paper blue.

A long glass tube is set up as shown in Fig. 8.2.

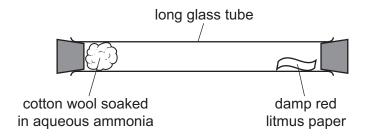



Fig. 8.2

At first, the litmus paper does **not** turn blue. After a short time, the litmus paper turns blue.

| Explain these results in terms of the kinetic particle theory. |  |  |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
|                                                                |  |  |  |  |  |  |  |  |  |  |
|                                                                |  |  |  |  |  |  |  |  |  |  |
|                                                                |  |  |  |  |  |  |  |  |  |  |
|                                                                |  |  |  |  |  |  |  |  |  |  |
|                                                                |  |  |  |  |  |  |  |  |  |  |
| [3]                                                            |  |  |  |  |  |  |  |  |  |  |

[Total: 12]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

|           |       |     | 2<br>He | helium<br>4   | 10            | Ne           | neon<br>20                   | 18 | Ā  | argon<br>40      | 36 | Ϋ́ | krypton<br>84   | 54 | Xe       | xenon<br>131     | 98    | R           | radon           | 118    | Og        | oganesson     |
|-----------|-------|-----|---------|---------------|---------------|--------------|------------------------------|----|----|------------------|----|----|-----------------|----|----------|------------------|-------|-------------|-----------------|--------|-----------|---------------|
|           |       | II/ |         |               |               |              |                              |    |    | chlorine<br>35.5 |    |    |                 |    |          |                  |       |             |                 |        |           |               |
|           |       | >   |         |               | 80            | 0            | oxygen<br>16                 | 16 | ഗ  | sulfur<br>32     | 34 | Se | selenium<br>79  | 52 | <u>e</u> | tellurium<br>128 | 84    | Ъ           | molouinm<br>-   | 116    |           | livermorium   |
|           |       | ^   |         |               | 7             | z            | nitrogen<br>14               | 15 | ۵  | phosphorus<br>31 | 33 | As | arsenic<br>75   | 51 | Sp       | antimony<br>122  | 83    | Ξ           | bismuth<br>209  | 115    | Mc        | moscovium     |
|           |       | 2   |         |               | 9             | ပ            | carbon<br>12                 | 14 | S  | silicon<br>28    | 32 | Ge | germanium<br>73 | 20 | Sn       | tin<br>119       | 82    | Ър          | lead<br>207     | 114    | lΗ        | flerovium     |
|           |       | ≡   |         |               | 2             | Ω            | boron<br>11                  | 13 | Ν  | aluminium<br>27  | 31 | Ga | gallium<br>70   | 49 | In       | indium<br>115    | 84    | 11          | thallium<br>204 | 113    | R         | nihonium      |
|           |       |     |         |               |               |              |                              |    |    |                  | 30 | Zu | zinc<br>65      | 48 | g        | cadmium<br>112   | 80    | Η̈́         | mercury<br>201  |        |           | copernicium   |
| cilicilis |       |     |         |               |               |              |                              |    |    |                  | 29 | Cn | copper<br>64    | 47 | Ag       | silver<br>108    | 62    | Αn          | gold<br>197     | 111    | Rg        | roentgenium   |
|           | Group |     |         |               |               |              |                              |    |    |                  | 28 | Ē  | nickel<br>59    | 46 | Pd       | palladium<br>106 | 78    | Ŧ           | platinum<br>195 | 110    | Ds        | darmstadtium  |
|           | Gr    |     |         |               | 1             |              |                              |    |    |                  | 27 | ဝိ | cobalt<br>59    | 45 | 돈        | rhodium<br>103   | 77    | 'n          | indium<br>192   | 109    | ¥         | meitnerium    |
| 2         |       |     | - エ     | hydrogen<br>1 |               |              |                              |    |    |                  | 26 | Ьe | iron<br>56      | 44 | Ru       | ruthenium<br>101 | 92    | Os          | osmium<br>190   | 108    | H         | hassium       |
|           |       |     |         |               |               |              |                              | 1  |    |                  | 25 | Mn | manganese<br>55 | 43 | ည        | technetium<br>-  | 75    | Re          | rhenium<br>186  | 107    | Bh        | bohrium       |
|           |       |     |         |               | _             | loq          | ass                          |    |    |                  | 24 | ပ် | chromium<br>52  | 42 | Mo       | molybdenum<br>96 | 74    | >           | tungsten<br>184 | 106    | Sg        | seaborgium    |
|           |       |     |         | Key           | atomic number | atomic symbo | name<br>relative atomic mass |    |    |                  | 23 | >  | vanadium<br>51  | 14 | Q<br>Q   | niobium<br>93    | 73    | <u>a</u>    | tantalum<br>181 | 105    | Op        | dubnium       |
|           |       |     |         |               |               | atc          | rel                          |    |    |                  | 22 | F  | titanium<br>48  | 40 | Zr       | zirconium<br>91  | 72    | Ξ           | hafnium<br>178  | 104    | 꿒         | rutherfordium |
|           |       |     |         |               |               |              |                              |    |    |                  | 21 | Sc | scandium<br>45  | 39 | >        | yttrium<br>89    | 57–71 | lanthanoids |                 | 89–103 | actinoids |               |
|           |       | =   |         |               | 4             | Be           | beryllium<br>9               | 12 | Mg | magnesium<br>24  | 20 | Ca | calcium<br>40   | 38 | ഗ്       | strontium<br>88  | 56    | Ва          | barium<br>137   | 88     | Ra        | radium        |
|           |       | _   | _       |               | 8             | =            | lithium<br>7                 | #  | Na | sodium<br>23     | 19 | ¥  | potassium<br>39 | 37 | &        | rubidium<br>85   | 55    | Cs          | caesium<br>133  | 87     | ᇁ         | francium      |

| 7.1 | Γn | lutetium<br>175     | 103 | ۲         | lawrencium   | I   |
|-----|----|---------------------|-----|-----------|--------------|-----|
| 20  | Υp | ytterbium<br>173    | 102 | Š         | nobelium     | ı   |
| 69  | Tm | thulium<br>169      | 101 | Md        | mendelevium  | ı   |
| 89  | Ē  | erbium<br>167       | 100 | Fm        | fermium      | I   |
| 29  | 웃  | holmium<br>165      | 66  | Es        | einsteinium  | I   |
| 99  | ۵  | dysprosium<br>163   | 86  | ర్        | californium  | I   |
| 65  | q  | terbium<br>159      | 97  | BK        | berkelium    | ı   |
| 64  | gg | gadolinium<br>157   | 96  | Cm        | curium       | I   |
| 63  | En | europium<br>152     | 95  | Am        | americium    | ı   |
| 62  | Sm | samarium<br>150     | 94  | Pu        | plutonium    | ı   |
| 61  | Pm | promethium          | 93  | N<br>D    | neptunium    | I   |
| 09  | PZ | neodymium<br>144    | 92  | $\supset$ | uranium      | 238 |
| 69  | Ą  | praseodymium<br>141 | 91  | Ра        | protactinium | 231 |
| 28  | Ce | cerium<br>140       | 06  | H         | thorium      | 232 |
| 22  | Гa | lanthanum<br>139    | 88  | Ac        | actinium     | ı   |

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).