

Cambridge IGCSE[™]

CHEMISTRY 0620/21

Paper 2 Multiple Choice (Extended)

May/June 2023

45 minutes

You must answer on the multiple choice answer sheet.

You will need: Multiple choice answer sheet

Soft clean eraser

Soft pencil (type B or HB is recommended)

INSTRUCTIONS

There are forty questions on this paper. Answer all questions.

- For each question there are four possible answers **A**, **B**, **C** and **D**. Choose the **one** you consider correct and record your choice in soft pencil on the multiple choice answer sheet.
- Follow the instructions on the multiple choice answer sheet.
- Write in soft pencil.
- Write your name, centre number and candidate number on the multiple choice answer sheet in the spaces provided unless this has been done for you.
- Do not use correction fluid.
- Do not write on any bar codes.
- You may use a calculator.

INFORMATION

- The total mark for this paper is 40.
- Each correct answer will score one mark.
- Any rough working should be done on this question paper.
- The Periodic Table is printed in the question paper.

1 The diagram shows the result of dropping a purple crystal into water.

Which processes take place in this experiment?

	chemical reaction	diffusing	dissolving
Α	✓	✓	X
В	✓	X	X
С	X	X	✓
D	X	✓	✓

2 Which row about elements, mixtures and compounds is correct?

	metallic element	non-metallic element	mixture	compound
Α	copper	methane	brass	sulfur
В	brass	sulfur	copper	methane
С	copper	sulfur	brass	methane
D	brass	methane	copper	sulfur

3 The atomic structures of four particles, W, X, Y and Z, are shown.

	electrons	neutrons	protons
W	2	2	2
Х	2	2	3
Υ	2	3	2
Z	3	2	3

Which particles are isotopes of the same element?

A W and X B W and Y C X and Y D X and Z

4	Whic	ch statement e	explai	ns why isot	opes of th	ne same e	element	hav	e the same cl	hemical	prope	rties?
	Α .	They have the same number of outer shell electrons.										
	В	They have the same number of neutrons.										
	C	They have different numbers of protons.										
	D	They have diff	ferent	t mass num	bers.							
5	Nitro	gen forms a n	nitride	ion with the	e formula	N ³⁻ .						
	Whic	ch particle doe	es no t	t have the s	ame elec	tronic cor	nfiguratio	on a	as the nitride i	on?		
	Α ,	A <i>l</i> ³⁺	В	C <i>l</i> -	С	Na⁺		D	O ²⁻			
6	Whic	ch row describ	es th	e formation	of single	covalent	bonds ii	n m	ethane?			
	A	atoms sh	nare a	a pair of ele	ctrons	nob			ns gain a tronic structur	e		
	В	atoms sh	nare a	a pair of ele	ctrons				the same num their outer she			
	С			ansferred fr to another	om one	nob			ns gain a tronic structur	e		
	D			ansferred fr to another	om one				the same num their outer she			
7	\M/bic	ch formula is a	n em	nirical form	ula?							
•			iii Ciii	pincar romi	uia:							
		C ₂ H ₄ O C ₄ H ₈ O ₂										
		C ₃ H ₇ COOH										
8	Heat	ing iron sulfid	e, Fe	S ₂ , in air pro	oduces s	ulfur dioxi	de.					
				4FeS ₂	+ 1102	→ 2Fe ₂	O ₃ + 89	SO ₂	·			
	Wha	t is the maxim	num n	nass of sulf	ur dioxide	e produce	d from 1	201	kg of iron sulfi	de?		
		64 kg	В	128 kg	С	240 kg		D	5 512 kg			

- 9 Which substance produces hydrogen and bromine when electrolysed?
 - A concentrated aqueous copper(II) bromide
 - **B** concentrated aqueous sodium bromide
 - C dilute aqueous potassium bromide
 - **D** molten lead(II) bromide
- 10 Which statements about hydrogen fuel cells are correct?
 - 1 Water is formed as the only waste product.
 - 2 Both water and carbon dioxide are formed as waste products.
 - 3 The overall reaction is $2H_2 + O_2 \rightarrow 2H_2O$.
 - 4 The overall reaction is endothermic.
 - **A** 1 and 3
- **B** 1 and 4
- **C** 2 and 3
- **D** 2 and 4
- 11 Ethene gas, C₂H₄, is completely burned in excess oxygen to form carbon dioxide and water.

The equation for this exothermic reaction is shown.

$$C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$$

The table shows the bond energies involved in the reaction.

bond	bond energy in kJ/mol
C=C	614
C–H	413
O=O	495
C=O	799
O–H	467

What is the total energy change in this reaction?

- **A** -954 kJ/mol
- **B** -1010 kJ/mol
- **C** -1313 kJ/mol
- **D** -1369 kJ/mol

12 Which row describes the effect on the activation energy and the frequency of particle collisions when the temperature of a chemical reaction is increased?

	activation energy	frequency of collisions
Α	increases	increases
В	no change	increases
С	increases	no change
D	no change	no change

13 Solid copper(II) sulfate exists in two different forms, anhydrous and hydrated.

One of these forms is blue and the other is white.

The change between these two forms is reversible.

blue form ← white form

What is the blue form and how is the change from the blue form to the white form brought about?

	blue form	change to white form
Α	anhydrous	add water
В	anhydrous	heat
С	hydrated	add water
D	hydrated	heat

14 Sodium ions, Na⁺, and oxygen ions, O²⁻, combine with chromium ions to form a salt.

The salt sodium dichromate has the formula Na₂Cr₂O₇.

What is the oxidation state of chromium in this salt?

A +2

B +3

C +6

D +12

15 The concentration of hydrogen ions in 100 cm³ of 0.1 mol/dm³ hydrochloric acid is higher than the concentration of hydrogen ions in 100 cm³ of 0.1 mol/dm³ ethanoic acid.

Which statement explains the difference in hydrogen ion concentration?

- A Ethanoic acid is an organic acid.
- **B** Ethanoic acid has a lower pH than hydrochloric acid.
- **C** Ethanoic acid is partially dissociated.
- **D** Ethanoic acid is a strong acid.

							6				
16	Wh	ich oxide	e is classi	fied as	an amp	hoteric o	oxide?				
	A	alumini	um oxide								
	В	calcium	oxide								
	С	copper((II) oxide								
	D	nitroger	n oxide								
17	Wh	ich meth	od produ	ces the	e salt co	pper(II)	carbonate	?			
	A	Add copper(II) oxide to water, then add excess aqueous sodium carbonate. Filter off the precipitate.									
	В	Add copper(II) oxide to dilute sulfuric acid, then add excess aqueous sodium carbonate. Filter off the precipitate.									
	С	Add copper to dilute hydrochloric acid, then add aqueous sodium carbonate. Filter off the precipitate.									
	D	Add co	oper(II) o	xide to	excess	aqueou	s sodium (arbonate	. Filter off	the precipi	itate.
18	Wh	ich state	ments ab	out the	trends	across a	a period of	the Perio	dic Table	are correc	t?
		1	Alumini	um is n	nore me	tallic tha	n sodium.				
		2	Berylliu	m is mo	ore meta	allic than	carbon.				
		3 Boron is more metallic than lithium.									
		4 Magnesium is more metallic than silicon.									
	Α	1 and 2	: I	B 1 a	ınd 3	С	2 and 4	D	3 and 4	ļ	

19 Some information about elements in Group II of the Periodic Table is shown.

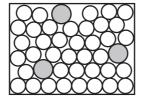
element	time taken to make 10 cm ³ of hydrogen gas when 1 g of metal is added to cold water	density in g/cm³	melting point/°C
beryllium	no reaction	1.85	1280
magnesium	>300 seconds	1.74	650
calcium	60 seconds	1.54	850
strontium	30 seconds	2.62	768
barium	10 seconds	3.51	714

Which row shows the correct trends in reactivity, density and melting point of the elements going down Group II of the Periodic Table?

	reactivity	density	melting point
Α	decreases down group	increases down group	decreases down group
В	decreases down group	decreases down group	no clear trend
С	increases down group	no clear trend	increases down group
D	increases down group	no clear trend	no clear trend

20 A new element oxfordium, Ox, was discovered with the following properties.

solubility	electrical conduction	formula of element	bonding in a molecule of Ox ₂
insoluble in water	does not conduct	Ox ₂	Ox≡Ox


In which group of the Periodic Table should the new element be placed?

- A Group III
- **B** Group V
- C Group VII
- **D** Group VIII

21 Which row describes a similarity and a difference between chlorine and bromine?

	similarity	difference
A	both are gases at room temperature and pressure	chlorine and bromine have different colours
В	both exist as diatomic molecules	chlorine is more dense than bromine
С	both have atoms with seven outer-shell electrons	only bromine will react with aqueous sodium chloride
D	both react with aqueous potassium iodide	chlorine is more reactive than bromine

- 22 Which statement describes transition elements?
 - **A** They have high densities and high melting points.
 - **B** They have high densities and low melting points.
 - **C** They have low densities and high melting points.
 - **D** They have low densities and low melting points.
- 23 Which gas is made when powdered zinc is added to dilute hydrochloric acid?
 - A carbon dioxide
 - **B** chlorine
 - C hydrogen
 - **D** oxygen
- **24** The diagram represents the structure of a solid.

Which solids does the diagram represent?

	brass	graphite	sodium chloride
Α	✓	✓	x
В	✓	X	X
С	X	✓	✓
D	X	X	✓

25 Steel is an alloy of iron.

Which statement explains why steel is stronger than iron?

- **A** Steel contains carbon which is a very hard substance.
- **B** The carbon atoms in steel bond together very strongly.
- **C** The carbon atoms in steel make the iron atoms bond together very strongly.
- **D** The carbon atoms prevent layers of iron atoms from sliding over each other.
- 26 Three students, X, Y and Z, are told that solid P reacts with dilute acids and also conducts electricity.

The table shows the students' suggestions about the identity of P.

Х	Y	Z
copper	iron	graphite

Which students are correct?

- **A** X, Y and Z **B**
 - **B** X only
- C Y only
- **D** Z only
- 27 Which statement explains why aluminium appears to be unreactive?
 - A It is coated in an oxide layer.
 - **B** It has a low density.
 - **C** It is low in the reactivity series.
 - **D** It is solid at room temperature.
- **28** During the electrolysis of aluminium oxide, the mass of the carbon anode changes.

Which row describes the change and gives a reason for this change?

	mass change of the anode	reason				
Α	decreases	carbon reacts to form carbon dioxide				
В	decreases	carbon dissolves in molten cryolite				
С	increases	ses electrodes become coated with cryolite				
D	increases	electrodes become coated with aluminium				

29 Several processes are used to treat domestic water.

Which row identifies a reason for the given process?

	process	reason
Α	chlorination	removes impurities
В	filtration	removes insoluble solids
С	sedimentation	removes soluble solids
D	use of carbon	kills bacteria

30 What is the equation for photosynthesis?

A
$$CO_2 + 3H_2 \rightarrow CH_3OH + H_2O$$

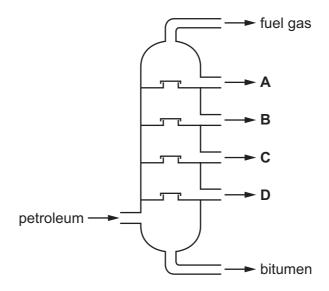
B
$$6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$$

$$\textbf{C} \quad C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$$

D
$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$$

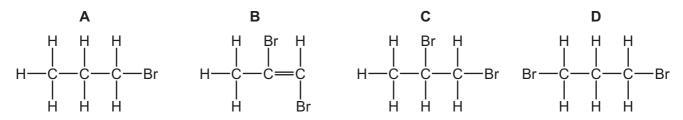
- 31 Which statement describes how the C–H bonds in methane gas in the atmosphere contribute to global warming?
 - **A** They absorb thermal energy from the Sun and emit some of this energy into space.
 - **B** They absorb thermal energy from the Sun and emit all of this energy towards the Earth.
 - **C** They absorb thermal energy from the Earth and emit all of this energy towards the Earth.
 - **D** They absorb thermal energy from the Earth and emit some of this energy towards the Earth.
- **32** The structural formulae of two hydrocarbons are shown.

Which statement about the hydrocarbons is correct?


- **A** They are both alkenes.
- **B** They decolourise aqueous bromine.
- **C** They are structural isomers.
- **D** They undergo addition reactions.

33 The structural formula of compound Q is given.

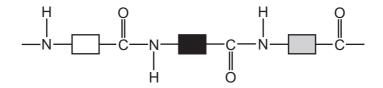
What is compound Q?


- A butyl butanoate
- **B** butyl propanoate
- C propyl butanoate
- **D** propyl propanoate
- **34** The fractional distillation of petroleum is shown.

Which fraction contains hydrocarbons with the longest chain length?

35 Which equation represents the cracking of an alkane?

- $\textbf{A} \quad 3C_2H_4 \, \rightarrow \, C_6H_{12}$
- $\textbf{B} \quad C_6 H_{12} \, + \, H_2 \, \rightarrow \, C_6 H_{14}$
- $\textbf{C} \quad C_6H_{14} \rightarrow 6C + 7H_2$
- **D** $C_6H_{14} \rightarrow C_2H_4 + C_4H_{10}$
- 36 What is the structure of the product of the reaction of propene with bromine?

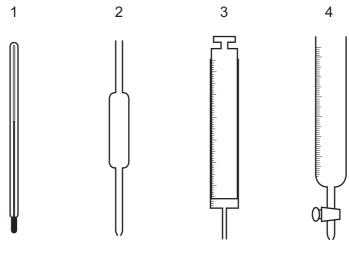

37 In reaction R, 2000 molecules of CH₂=CH₂ react to form a single molecule X only.

2000
$$CH_2=CH_2 \rightarrow X$$

Which terms describe reaction R, CH₂=CH₂ and X?

	reaction R	Х	
Α	addition	monomer	polymer
В	addition	polymer	monomer
С	substitution	monomer	polymer
D	substitution	polymer	monomer

38 Part of the structure of a polymer is shown.

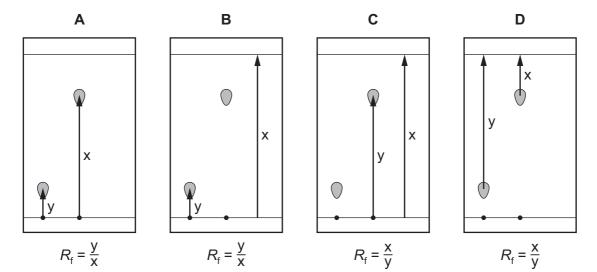


Which statements about the polymer are correct?

- 1 The polymer is nylon.
- 2 The polymer is formed by condensation polymerisation.
- 3 There are ester linkages between the monomers.
- **A** 1 and 2
- **B** 2 and 3
- C 2 only
- **D** 3 only

39 The concentration of acids and alkalis can be determined by titration.

Which pieces of equipment are needed to perform a titration?


A 1 and 2

B 1 and 3

C 2 and 3

D 2 and 4

40 Which chromatogram shows how the $R_{\rm f}$ value of a substance is calculated?

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

	₹	² H	helium 4	10	Se	neon 20	18	Αr	argon 40	36	첫	krypton 84	54	×	xenon 131	98	R	radon	118	Og	oganesson -			
	\equiv			6	ட	fluorine 19	17	Cl	chlorine 35.5	35	Ŗ	bromine 80	53	Н	iodine 127	85	Ą	astatine -	117	<u>S</u>	tennessine -			
	5						80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ъ	molonium —	116	_	livermorium —
	>			7	Z	nitrogen 14	15	凸	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	: <u>.</u>	bismuth 209	115	Mc	moscovium -			
	≥			9	ပ	carbon 12	41	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	ŀΙ	flerovium -			
	≡			2	Ω	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	П	indium 115	84	11	thallium 204	113	R	nihonium —			
										30	Zn	zinc 65	48	පි	cadmium 112	80	Р	mercury 201	112	ű	copernicium —			
										29	Co	copper 64	47	Ag	silver 108	79	Αn	gold 197	111	Rg	roentgenium -			
Group										28	z	nickel 59	46	Pd	palladium 106	78	귙	platinum 195	110	Ds	darmstadtium -			
Q				1						27	ပိ	cobalt 59	45	格	rhodium 103	77	ľ	iridium 192	109	Μţ	meitnerium -			
		- I	hydrogen 1											Ru	ruthenium 101	92	Os	osmium 190	108	Hs	hassium			
							1			25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium —			
				_	pol	ass						chromium 52		Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -			
			Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	14	g	niobium 93	73	<u>Б</u>	tantalum 181	105	Op	dubnium -			
					atc	- Le				22	i=	titanium 48	40	Zr	zirconium 91	72	士	hafnium 178	104	꿆	rutherfordium —			
										21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids				
	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	99	Ba	barium 137	88	Ra	radium			
	_			3	=	lithium 7	7	Na	sodium 23	19	×	potassium 39	37	S S	rubidium 85	55	S	caesium 133	87	ቷ	francium -			

7.1	P	lutetium	175	103	۲	lawrencium	I
70	Υp	ytterbium	173	102	Š	nobelium	ı
69	Ę	thulium	169	101	Md	mendelevium	I
89	Ē	erbinm	167	100	Fm	ferminm	ı
29	웃	holmium	165	66	Es	einsteinium	_
99	ρ	dysprosium	163	86	ర్	califomium	Ι
65	Tp	terbium	159	26	益	berkelium	_
64	Вd	gadolinium	157	96	CB	curium	ı
63	Ē	europium	152	92	Am	americium	I
62	Sm	samarium	150	94	Pu	plutonium	I
61	Pm	promethium	ı	93	dΝ	neptunium	_
09	PΝ	neodymium	144	92	\supset	uranium	238
69	Ą	praseodymium	141	91	Ра	protactinium	231
58	Ce	cerium	140	06	Ч	thorium	232
22	Га	lanthanum	139	89	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is $24\,\mathrm{dm^3}$ at room temperature and pressure (r.t.p.).