

# **Cambridge IGCSE**<sup>™</sup>

| CANDIDATE<br>NAME |  |                     |  |  |
|-------------------|--|---------------------|--|--|
| CENTRE<br>NUMBER  |  | CANDIDATE<br>NUMBER |  |  |

CHEMISTRY 0620/33

Paper 3 Theory (Core)

May/June 2022

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

#### **INSTRUCTIONS**

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

#### **INFORMATION**

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [ ].
- The Periodic Table is printed in the question paper.

1 (a) A list of symbols and formulae is shown.

| $Al_2O_3$                      |
|--------------------------------|
| <sub>2</sub> H <sub>5</sub> OH |
| $CO_2$                         |
| Fe <sub>2</sub> O <sub>3</sub> |
| $H_2$                          |
| He                             |
| K <sup>+</sup>                 |
| Li <sup>+</sup>                |
| $N_2$                          |
| Na⁺                            |
| O <sup>2-</sup>                |

Answer the following questions using these symbols or formulae. Each symbol or formula may be used once, more than once or not at all.

State which symbol or formula represents:

| (i)   | an element that is monoatomic                       |     |
|-------|-----------------------------------------------------|-----|
|       |                                                     | [1] |
| (ii)  | an ion that gives a red colour in a flame test      |     |
|       |                                                     | [1] |
| (iii) | an element that can be used as a fuel               |     |
|       |                                                     | [1] |
| (iv)  | a gas that contributes to climate change            |     |
|       |                                                     | [1] |
| (v)   | an ion that is formed when an atom gains electrons. |     |
|       |                                                     | [1] |

**(b)** Complete the table to show the relative charges of a proton, neutron and electron.

| type of particle | relative charge |  |  |  |
|------------------|-----------------|--|--|--|
| proton           |                 |  |  |  |
| neutron          | 0               |  |  |  |
| electron         |                 |  |  |  |

[2]

| (c) | Choose the two correct statements about nitrogen and hydrogen in a mixture. Tick $(\checkmark)$ <b>two</b> boxes. |  |     |
|-----|-------------------------------------------------------------------------------------------------------------------|--|-----|
|     | The nitrogen and hydrogen mixture can be separated by physical means.                                             |  |     |
|     | The nitrogen and hydrogen mixture is liquid at room temperature.                                                  |  |     |
|     | The atoms of nitrogen and hydrogen in the mixture are chemically combined.                                        |  |     |
|     | Air is mainly a mixture of nitrogen and hydrogen.                                                                 |  |     |
|     | The bonding in both nitrogen and hydrogen molecules is covalent.                                                  |  |     |
|     |                                                                                                                   |  | [2] |
|     |                                                                                                                   |  |     |

[Total: 9]


2 The table shows the masses of some ions in a 1000 cm³ sample of toothpaste.

|             |                               | T. C.           |
|-------------|-------------------------------|-----------------------------------------------------|
| name of ion | formula of ion                | mass of ion in 1000 cm <sup>3</sup> of toothpaste/g |
|             | NH <sub>4</sub> <sup>+</sup>  | 0.2                                                 |
| calcium     | Ca <sup>2+</sup>              | 0.8                                                 |
|             | CO <sub>3</sub> <sup>2-</sup> | 0.7                                                 |
| chloride    | C1-                           | 0.9                                                 |
| fluoride    | F-                            | 2.2                                                 |
| magnesium   | Mg <sup>2+</sup>              | 2.0                                                 |
| phosphate   | PO <sub>4</sub> <sup>3-</sup> | 24.4                                                |
| sodium      | Na⁺                           | 34.2                                                |
| sulfate     | SO <sub>4</sub> <sup>2-</sup> | 10.1                                                |
| tin(II)     | Sn <sup>2+</sup>              | 0.4                                                 |
| zinc        | Zn <sup>2+</sup>              | 0.1                                                 |

| (a) | Ans   | swer these questions using only the information in the table.                                                                       |
|-----|-------|-------------------------------------------------------------------------------------------------------------------------------------|
|     | (i)   | State which negative ion has the highest mass in 1000 cm <sup>3</sup> of toothpaste.                                                |
|     |       | [1]                                                                                                                                 |
|     | (ii)  | Name the compound that contains NH <sub>4</sub> <sup>+</sup> and CO <sub>3</sub> <sup>2-</sup> ions.                                |
|     |       | [1]                                                                                                                                 |
| (   | (iii) | Calculate the mass of fluoride ions in 250 cm³ of toothpaste.                                                                       |
|     |       |                                                                                                                                     |
|     |       |                                                                                                                                     |
|     |       |                                                                                                                                     |
|     |       | mass = g [1]                                                                                                                        |
| (b) |       | scribe the observations when aqueous ammonia is added drop by drop to a solution staining zinc ions until the ammonia is in excess. |
|     | obs   | servations with a few drops of ammonia                                                                                              |
|     |       |                                                                                                                                     |
|     | obs   | servations with ammonia in excess                                                                                                   |
|     |       |                                                                                                                                     |

[2]

(c) Toothpaste also contains compound **A**. The structure of compound **A** is shown.



|     |      | gen.                                                            | uia of compo        | ound <b>A</b> to s | snow the num  | iber of atoms o  | or carbon, ny | arogen and   |
|-----|------|-----------------------------------------------------------------|---------------------|--------------------|---------------|------------------|---------------|--------------|
|     |      |                                                                 |                     |                    |               |                  |               | [1]          |
| (d) |      | mpound <b>A</b> is a<br>anol, C <sub>2</sub> H <sub>5</sub> OH, |                     | lcohol.            |               |                  |               |              |
|     | (i)  | Complete the                                                    | se sentence         | s about eth        | anol using w  | ords from the li | st.           |              |
|     |      | different                                                       | formula             | group              | identical     | molecule         | similar       |              |
|     |      | Ethanol is pa                                                   | rt of the alco      | hol homolo         | gous series.  |                  |               |              |
|     |      | Each membe                                                      | r of the alcol      | nol homolog        | gous series h | as the same fu   | nctional      |              |
|     |      | Members of th                                                   | ne same hom         | nologous se        | ries have che | mical properties | s that are    | [2]          |
|     | (ii) | When ethano produced.                                           | ol undergoes        | incomplet          | e combustion  | ı, a small amo   | unt of carbor | n dioxide is |
|     |      | Name two o combustion.                                          | <b>ther</b> substai | nces that a        | are produced  | when ethano      | undergoes     | incomplete   |
|     |      |                                                                 |                     |                    | and           |                  |               | [2]          |
|     |      |                                                                 |                     |                    |               |                  |               | [Total: 10]  |

| 3 | This qu | estion | is about | Group I | and | Group | VII | elements. |
|---|---------|--------|----------|---------|-----|-------|-----|-----------|
|---|---------|--------|----------|---------|-----|-------|-----|-----------|

| (a) | Deduce the number o | f electrons, | neutrons | and | protons | in | one | atom | of t | the | isotope | of | sodium |
|-----|---------------------|--------------|----------|-----|---------|----|-----|------|------|-----|---------|----|--------|
|     | shown.              |              |          |     |         |    |     |      |      |     |         |    |        |

|     |       | <sup>23</sup> Na                                                         |     |
|-----|-------|--------------------------------------------------------------------------|-----|
|     | nun   | nber of electrons                                                        |     |
|     | nun   | nber of neutrons                                                         |     |
|     | nun   | nber of protons                                                          |     |
|     |       |                                                                          | [3] |
| (b) | Soc   | dium reacts with chlorine to produce sodium chloride.                    |     |
|     | (i)   | State the colour of chlorine gas.                                        |     |
|     |       |                                                                          | [1] |
|     | (ii)  | Chlorine is a diatomic molecule.                                         |     |
|     |       | State the meaning of the term <i>diatomic</i> .                          |     |
|     |       |                                                                          | [1] |
|     | (iii) | Complete the chemical equation for the reaction of sodium with chlorine. |     |
|     |       | 2Na +NaC <i>l</i>                                                        | [2] |
|     | (iv)  | Sodium chloride is an ionic compound.                                    |     |
|     |       | Describe <b>two</b> physical properties of ionic compounds.              |     |
|     |       | 1                                                                        |     |
|     |       | 2                                                                        | 1   |
|     |       |                                                                          | 171 |

(c) The table shows some properties of four Group I elements.

| element     | melting point<br>/°C | boiling point<br>/°C | atomic radius<br>/nm |  |  |
|-------------|----------------------|----------------------|----------------------|--|--|
| lithium 181 |                      | lithium 181 1342     |                      |  |  |
| sodium      | 98                   | 883                  |                      |  |  |
| potassium   |                      | 760                  | 0.235                |  |  |
| rubidium    | 39                   | 686                  | 0.250                |  |  |

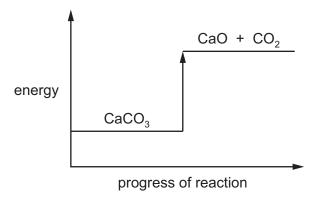
|  | • | the | melting | point | of | potassiun |
|--|---|-----|---------|-------|----|-----------|
|--|---|-----|---------|-------|----|-----------|

| • | the atomic radius of sodium. | [2] |
|---|------------------------------|-----|
|---|------------------------------|-----|

|       | the atomic radius of sodium.                                                                                                     | [2]  |
|-------|----------------------------------------------------------------------------------------------------------------------------------|------|
| (ii)  | Predict the physical state of rubidium at 700 °C. Give a reason for your answer.                                                 |      |
|       |                                                                                                                                  |      |
|       |                                                                                                                                  | [2]  |
| (iii) | Give <b>two</b> physical properties of Group I metals that are different from transition eleme and state how they are different. | ents |
|       | 1                                                                                                                                |      |
|       |                                                                                                                                  |      |
|       | 2                                                                                                                                |      |
|       |                                                                                                                                  |      |
|       |                                                                                                                                  | [2]  |

(d) Aqueous chlorine reacts with aqueous sodium iodide.

$$Cl_2$$
 + 2NaI  $\rightarrow$  2NaC $l$  +  $I_2$ 


Explain how this equation shows that chlorine is more reactive than iodine.

[Total: 16]

|  | 4 | This | question | is | about | acids | and | carbonates |
|--|---|------|----------|----|-------|-------|-----|------------|
|--|---|------|----------|----|-------|-------|-----|------------|

| (a)         |                                                                           | Describe the colour change when excess acid is added to a solution of methyl orange in alkaline solution. |         |                      |               |                        |       |                      |        |           |     |  |
|-------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------|----------------------|---------------|------------------------|-------|----------------------|--------|-----------|-----|--|
|             | from                                                                      | om [                                                                                                      |         |                      |               |                        |       |                      |        |           |     |  |
| (b)         | Con                                                                       | nple                                                                                                      | ete the | e word equation      | n for t       | the reaction of hyd    | droch | loric acid with calc | ium ca | arbonate. |     |  |
| hydro<br>ad | chlor<br>cid                                                              | ic                                                                                                        | +       | calcium<br>carbonate | $\rightarrow$ |                        | +     |                      | +      | water     |     |  |
| (c)         | (c) Calcium carbonate decomposes when heated.                             |                                                                                                           |         |                      |               |                        |       |                      |        | [2]       |     |  |
|             | calcium carbonate → calcium oxide + carbon dioxide                        |                                                                                                           |         |                      |               |                        |       |                      |        |           |     |  |
|             | (i) Calcium carbonate is used in the manufacture of lime (calcium oxide). |                                                                                                           |         |                      |               |                        |       |                      |        |           |     |  |
|             | State one <b>other</b> use of calcium carbonate.                          |                                                                                                           |         |                      |               |                        |       |                      |        |           |     |  |
|             |                                                                           |                                                                                                           |         |                      |               |                        |       |                      |        |           | [1] |  |
|             | (ii)                                                                      | The                                                                                                       | e dec   | omposition of        | calciu        | m carbonate is er      | dothe | ermic.               |        |           |     |  |
|             |                                                                           | Sta                                                                                                       | ate the | e meaning of t       | he ter        | m <i>endothermic</i> . |       |                      |        |           |     |  |

(iii) The energy level diagram for the decomposition of calcium carbonate is shown.



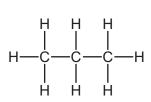
|                                                                               | [1 |
|-------------------------------------------------------------------------------|----|
|                                                                               |    |
|                                                                               |    |
| Explain how the energy level diagram shows that this reaction is endothermic. |    |

| (iv) | When 0.50 g of calcium carbonate decomposes, 120 cm <sup>3</sup> of carbon dioxide gas is produced. |
|------|-----------------------------------------------------------------------------------------------------|
|      | Calculate the volume of carbon dioxide gas produced when 0.10 g of calcium carbonate is used.       |

volume of carbon dioxide gas = ...... cm<sup>3</sup> [1]

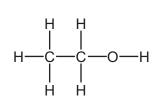
[Total: 8]

| This qu | uestion is about Group VI elements and their compounds.                                                 |
|---------|---------------------------------------------------------------------------------------------------------|
| (a) Na  | ame the changes of physical state when:                                                                 |
| •       | oxygen gas is converted to liquid oxygen                                                                |
|         |                                                                                                         |
| •       | solid sulfur is converted directly to sulfur gas.                                                       |
|         | [2]                                                                                                     |
|         | [-1                                                                                                     |
|         | se the kinetic particle model to describe the differences between solid sulfur and sulfur gas terms of: |
| •       | the arrangement of the particles                                                                        |
|         |                                                                                                         |
|         |                                                                                                         |
| •       | the motion of the particles.                                                                            |
|         |                                                                                                         |
|         | [4]                                                                                                     |
|         |                                                                                                         |
| (c) De  | educe the electronic structure of sulfur.                                                               |
| Us      | se the Periodic Table to help you.                                                                      |
|         | [1]                                                                                                     |
| . ,     | ulfur is used in the manufacture of sulfuric acid. se equation shows one of the reactions.              |
|         | $2SO_2 + O_2 \rightleftharpoons 2SO_3$                                                                  |
| (i)     | State the meaning of the symbol <del>←</del> .                                                          |
|         | [1]                                                                                                     |
| (ii)    | Give <b>one</b> use of sulfur dioxide other than in making sulfuric acid.                               |
|         | [1]                                                                                                     |
|         |                                                                                                         |


(e) Acid rain is formed when sulfur dioxide reacts with water vapour in the atmosphere.

| (i)  | Choose the pH value which is acidic.     |                |              |           |       |             |  |  |  |  |  |  |
|------|------------------------------------------|----------------|--------------|-----------|-------|-------------|--|--|--|--|--|--|
|      | Draw a circle around your chosen answer. |                |              |           |       |             |  |  |  |  |  |  |
|      |                                          | pH 4           | pH 7         | pH 10     | pH 14 | [1]         |  |  |  |  |  |  |
| (ii) | Describe one                             | effect of acid | d rain on bu | uildings. |       |             |  |  |  |  |  |  |
|      |                                          |                |              |           |       | [1]         |  |  |  |  |  |  |
|      |                                          |                |              |           |       | [Total: 11] |  |  |  |  |  |  |

6 (a) The structures of four organic compounds, B, C, D and E, are shown.


H—C—C

В



C

H—C—C=C



| (i) | State which compound | , <b>B</b> , | C, | <b>D</b> or | Ε, | dissolves | in | water to | form | an | acidic | solution |
|-----|----------------------|--------------|----|-------------|----|-----------|----|----------|------|----|--------|----------|
|-----|----------------------|--------------|----|-------------|----|-----------|----|----------|------|----|--------|----------|

(ii) State which compound, **B**, **C**, **D** or **E**, is a saturated hydrocarbon.

| [1] |
|-----|
|-----|

(iii) State which compound,  $\mathbf{B}$ ,  $\mathbf{C}$ ,  $\mathbf{D}$  or  $\mathbf{E}$ , is an unreactive compound except in terms of burning.

| [4]     |
|---------|
| <br>[1] |

(iv) State which compound, **B**, **C**, **D** or **E**, decolourises aqueous bromine.

| <br>[1] |
|---------|

**(b)** Ethanol can be manufactured from ethene and one other reactant.

Describe the manufacture of ethanol from ethene to include:

the formula of ethene

.....

the name of the other reactant

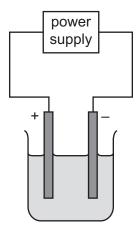
• the conditions needed.

[4]

(c) Complete the table to show the name and uses of some petroleum fractions.

| name of fraction | use of fraction  |
|------------------|------------------|
|                  | making chemicals |
| kerosene         |                  |
| fuel oil         |                  |

[3]


[Total: 11]

- 7 This question is about lithium and compounds of lithium.
  - (a) Lithium reacts with nitrogen to produce lithium nitride, Li<sub>3</sub>N.

Complete the chemical equation for this reaction.

....Li + 
$$N_2 \rightarrow ....Li_3N$$
 [2]

**(b)** Molten lithium bromide is electrolysed using carbon electrodes. The apparatus is shown.



- (i) Complete the diagram by labelling:
  - the anode
  - the electrolyte. [2]
- (ii) Name the products formed at each electrode.

| positive electrode |     |
|--------------------|-----|
| negative electrode |     |
|                    | [2] |

(iii) The carbon electrodes conduct electricity.

Give one **other** property that these electrodes must have.

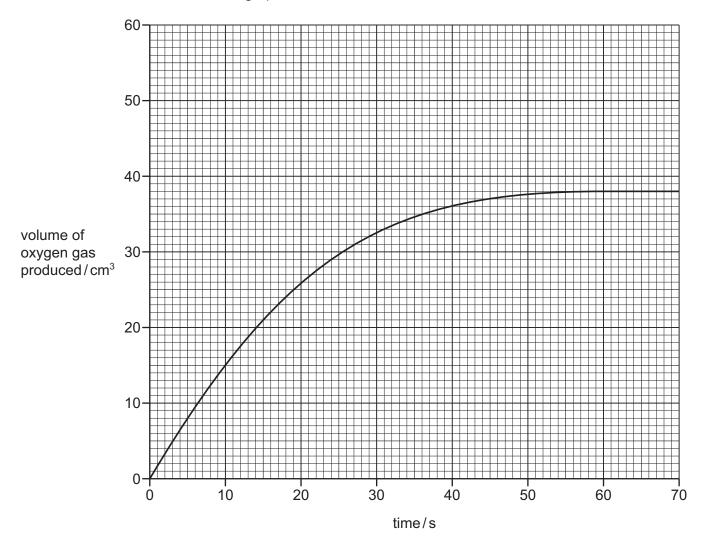
......[1

(c) A compound of lithium has the formula  $\rm C_3H_5O_2Li_2.$ 

Complete the table to calculate the relative molecular mass of  ${\rm C_3H_5O_2Li_2}$ .

| atom     | number of atoms | relative<br>atomic mass |             |
|----------|-----------------|-------------------------|-------------|
| carbon   | 3               | 12                      | 3 × 12 = 36 |
| hydrogen |                 | 1                       |             |
| oxygen   |                 | 16                      |             |
| lithium  |                 | 7                       |             |

| relative molecular mass : | = | [2] |
|---------------------------|---|-----|
|---------------------------|---|-----|


[Total: 9]

**8** A student investigates the rate of decomposition of aqueous hydrogen peroxide using 0.2g of a catalyst.

$$2H_2O_2 \rightarrow 2H_2O + O_2$$

The rate of reaction is found by measuring the volume of oxygen gas produced as time increases.

The results are shown on the graph.



(a) Deduce the time taken to collect 35 cm<sup>3</sup> of oxygen gas.

**(b)** The experiment is repeated using 0.2g of smaller pieces of the catalyst.

All other conditions stay the same.

Draw a line **on the grid** to show how the volume of oxygen gas produced changes as time increases. [2]

| (c) | Describe the effect each of the following has on the rate of decomposition of hydrogen peroxide.                                  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------|
|     | All other conditions stay the same.                                                                                               |
|     | The reaction is carried out at a higher temperature.                                                                              |
|     |                                                                                                                                   |
|     | The reaction is carried out using a lower concentration of hydrogen peroxide.                                                     |
|     | [2]                                                                                                                               |
|     | [~]                                                                                                                               |
| (d) | $\label{eq:hydrogen} \mbox{Hydrogen peroxide reduces sodium chlorate}(I), \mbox{NaC}{\it l}\mbox{O}, \mbox{ to sodium chloride}.$ |
|     | $H_2O_2 + NaClO \rightarrow NaCl + H_2O + O_2$                                                                                    |
|     | Describe how this equation shows that sodium chlorate(I) has been reduced.                                                        |
|     | [1]                                                                                                                               |
|     | [Total: 6]                                                                                                                        |

## **BLANK PAGE**

### **BLANK PAGE**

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

|   |       | <b>=</b> | 2<br>He | helium<br>4   | 10            | Ne           | neon<br>20                   | 18 | Ā          | argon<br>40      | 36 | 궃  | krypton<br>84   | 25 | Xe       | xenon<br>131     | 98    | R           | radon           |        |           |                    |
|---|-------|----------|---------|---------------|---------------|--------------|------------------------------|----|------------|------------------|----|----|-----------------|----|----------|------------------|-------|-------------|-----------------|--------|-----------|--------------------|
|   |       | II/      |         |               | 6             | ட            | fluorine<br>19               | 17 | Cl         | chlorine<br>35.5 | 35 | ğ  | bromine<br>80   | 53 | Н        | iodine<br>127    | 85    | Αţ          | astatine<br>-   |        |           |                    |
|   |       | 5        |         |               | 80            | 0            | oxygen<br>16                 | 16 | ഗ          | sulfur<br>32     | 34 | Se | selenium<br>79  | 52 | <u>e</u> | tellurium<br>128 | 84    | Po          | polonium<br>–   | 116    |           | livermorium<br>-   |
|   |       | >        |         |               | 7             | z            | nitrogen<br>14               | 15 | 凸          | phosphorus<br>31 | 33 | As | arsenic<br>75   | 51 | Sb       | antimony<br>122  | 83    | B           | bismuth<br>209  |        |           |                    |
|   |       | ≥        |         |               | 9             | ပ            | carbon<br>12                 | 14 | :S         | silicon<br>28    | 32 | Ge | germanium<br>73 | 20 | Sn       | tin<br>119       | 82    | Pb          | lead<br>207     | 114    | Fl        | flerovium<br>-     |
|   |       | =        |         |               | 2             | Ф            | boron<br>11                  | 13 | <i>Y</i> 1 | aluminium<br>27  | 31 | Ga | gallium<br>70   | 49 | In       | indium<br>115    | 84    | 11          | thallium<br>204 |        |           |                    |
|   |       |          |         |               |               |              |                              |    |            |                  | 30 | Zu | zinc<br>65      | 48 | g        | cadmium<br>112   | 80    | Η̈́         | mercury<br>201  | 112    | ű         | copernicium        |
|   |       |          |         |               |               |              |                              |    |            |                  | 29 | Cn | copper<br>64    | 47 | Ag       | silver<br>108    | 62    | Αu          | gold<br>197     | 111    | Rg        | roentgenium<br>-   |
|   | dn    |          |         |               |               |              |                              |    |            |                  | 28 | z  | nickel<br>59    | 46 | Pd       | palladium<br>106 | 78    | ₹           | platinum<br>195 | 110    | Ds        | darmstadtium<br>-  |
|   | Group |          |         |               |               |              |                              |    |            |                  | 27 | ပိ | cobalt<br>59    | 45 | 몬        | rhodium<br>103   | 77    | 'n          | indium<br>192   | 109    | ₩         | meitnerium<br>-    |
|   |       |          | - エ     | hydrogen<br>1 |               |              |                              |    |            |                  | 26 | Fe | iron<br>56      | 44 | Ru       | ruthenium<br>101 | 9/    | SO          | osmium<br>190   | 108    | Hs        | hassium            |
|   |       |          |         |               | J             |              |                              |    |            |                  | 25 | Mn | manganese<br>55 | 43 | ည        | technetium<br>-  | 75    | Re          | rhenium<br>186  | 107    | Bh        | bohrium            |
|   |       |          |         |               |               | loc          | SS                           |    |            |                  | 24 | ပ် | chromium<br>52  | 42 | Mo       | molybdenum<br>96 | 74    | >           | tungsten<br>184 | 106    | Sg        | seaborgium<br>-    |
|   |       |          |         | Key           | atomic number | atomic symbo | name<br>relative atomic mass |    |            |                  | 23 | >  | vanadium<br>51  | 14 | qN       | niobium<br>93    | 73    | <u>n</u>    | tantalum<br>181 | 105    | Op        | dubnium            |
|   |       |          |         |               | , a           | ato          | rela                         |    |            |                  | 22 | ı  | titanium<br>48  | 40 | Zr       | zirconium<br>91  | 72    | Ξ           | hafnium<br>178  | 104    | 꿒         | rutherfordium<br>- |
|   |       |          |         |               |               |              |                              | J  |            |                  | 21 | Sc | scandium<br>45  | 39 | >        | yttrium<br>89    | 57–71 | lanthanoids |                 | 89–103 | actinoids |                    |
|   |       | =        |         |               | 4             | Be           | beryllium<br>9               | 12 | Mg         | magnesium<br>24  | 20 | Ca | calcium<br>40   | 38 | ഗ്       | strontium<br>88  | 56    | Ba          | barium<br>137   | 88     | Ra        | radium             |
|   |       | _        |         |               | 3             | :=           | lithium<br>7                 | 11 | Na         | sodium<br>23     | 19 | メ  | potassium<br>39 | 37 | S<br>S   | rubidium<br>85   | 55    | Cs          | caesium<br>133  | 87     | ъ́        | francium<br>-      |
| · |       |          |         |               |               |              |                              | •  |            |                  |    |    |                 |    |          |                  |       |             |                 |        |           |                    |

| Lu<br>Lu         | lutetium<br>175     | 103 | ۲      | lawrencium   | I   |
|------------------|---------------------|-----|--------|--------------|-----|
| ° X              | ytterbium<br>173    | 102 | 8<br>N | nobelium     | I   |
| 69<br>Tm         | thulium<br>169      | 101 | Md     | mendelevium  | I   |
| 88<br>F          | erbium<br>167       | 100 | Fm     | ferminm      | I   |
| 67<br>HO         | holmium<br>165      | 66  | Es     | einsteinium  | I   |
| 99               | dysprosium<br>163   | 86  | ŭ      | californium  | I   |
| 65<br><b>Tb</b>  | terbium<br>159      | 26  | BK     | berkelium    | I   |
| <sup>20</sup> Gd | gadolinium<br>157   | 96  | Cm     | curium       | I   |
| 63<br>Eu         | europium<br>152     | 92  | Am     | americium    | I   |
| 62<br>Sm         | samarium<br>150     | 94  | Pu     | plutonium    | I   |
| 61<br>Pm         | promethium          | 93  | δ      | neptunium    | I   |
| ° PN             | _                   |     |        |              |     |
| .59<br>Pr        | praseodymium<br>141 | 91  | Ра     | protactinium | 231 |
|                  | cerium<br>140       |     |        |              |     |
| 57<br><b>La</b>  | lanthanum<br>139    | 88  | Ac     | actinium     | I   |

lanthanoids

actinoids

The volume of one mole of any gas is  $24\,\mathrm{dm^3}$  at room temperature and pressure (r.t.p.).