

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 0620/42

Paper 4 Theory (Extended)

May/June 2020

1 hour 15 minutes

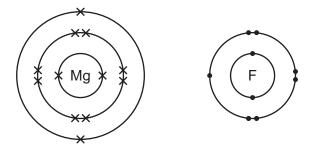
You must answer on the question paper.

No additional materials are needed.

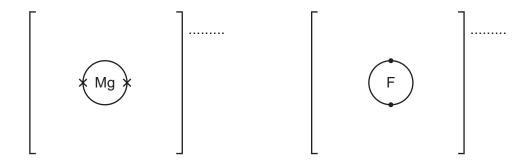
INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION


- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

	(a) Give the name of the process that:		
(i)	occurs when a gas turns into a liquid		
(ii)			
(iii)	is used to separate a mixture of liquids with different boiling points		
(iv)			
(v)	is used to separate a mixture of amino acids.		
(b) Th	e symbols of the elements in Period 2 of the Periodic Table are shown.	. [1]	
(5)	Li Be B C N O F Ne		
de: Ea	r each of the following, give the symbol of an element from Period 2 which matches scription. Ich element may be used once, more than once or not at all.	s the	
(i)	combines with hydrogen to produce ammonia		
(i) (ii)		. [1]	
	combines with hydrogen to produce ammonia makes up approximately 21% of clean, dry air has atoms with only two electrons in the outer shell	. [1]	
(ii)	combines with hydrogen to produce ammonia makes up approximately 21% of clean, dry air	. [1] . [1]	
(ii)	combines with hydrogen to produce ammonia makes up approximately 21% of clean, dry air has atoms with only two electrons in the outer shell has atoms with only seven protons is a monoatomic gas	. [1] . [1] . [1]	
(ii) (iii)	combines with hydrogen to produce ammonia makes up approximately 21% of clean, dry air has atoms with only two electrons in the outer shell has atoms with only seven protons	. [1] . [1] . [1]	


1

- 2 Fluorine forms both ionic and covalent compounds.
 - (a) Magnesium reacts with fluorine to form the ionic compound magnesium fluoride.

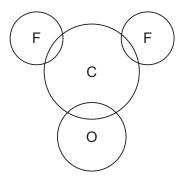
The electronic structures of an atom of magnesium and an atom of fluorine are shown.

(i) Complete the dot-and-cross diagrams to show the electronic structures of one magnesium ion and one fluoride ion. Show the charges on the ions.

(ii) What is the formula of magnesium fluoride?
_______[1

[3]

(iii) Magnesium fluoride does **not** conduct electricity when it is solid.


What can be done to solid magnesium fluoride to make it conduct electricity?

In your answer explain why magnesium fluoride conducts electricity when this change is made.

(b) Carbonyl fluoride, ${\rm COF_2}$, is a covalent compound. The structure of a molecule of ${\rm COF_2}$ is shown.

Complete the dot-and-cross diagram to show the electron arrangement in a molecule of carbonyl fluoride. Show outer shell electrons only.

[3]

(c) The melting points of magnesium fluoride and carbonyl fluoride are shown.

	melting point/°C
magnesium fluoride	1263
carbonyl fluoride	-111

(i)	Explain, using your knowledge of structure and bonding, why magnesium fluoride has a high melting point.
	[2]
(ii)	Explain, using your knowledge of structure and bonding, why carbonyl fluoride has a low melting point.
	[2]

[Total: 13]

3	(a) Su	furic acid is made from sulfur in a four-stage process.	
	sta	ge 1 Sulfur is converted into sulfur dioxide.	
	sta	ge 2 Sulfur dioxide is converted into sulfur trioxide.	
	sta	ge 3 Sulfur trioxide is converted into oleum.	
	sta	ge 4 Oleum is converted into sulfuric acid.	
	(i)	How is sulfur converted into sulfur dioxide in stage 1 ?	
			[1]
	(ii)	Describe how sulfur dioxide is converted into sulfur trioxide in stage 2.	
		Your answer should include:	
		an equation for the reaction	
		the temperature usedthe name of the catalyst used.	
			[3]
	(iii)	The reaction in stage 2 can reach equilibrium.	
		What is meant by the term equilibrium?	
			[2]
	(b) Sul	fur triovide is converted into cloum, U.S.O., in stage ?	
		Ifur trioxide is converted into oleum, $H_2S_2O_7$, in stage 3 . That is sulfur trioxide reacted with to convert it into oleum?	
	VVI		ra ⁻
	••••		[1
	(c) Ole	eum is converted into sulfuric acid in stage 4 .	
	Wr	ite a chemical equation for the conversion of oleum, H ₂ S ₂ O ₇ , into sulfuric acid.	
			[2]

(d)	Wh	en copper is reacted with hot concentrated sulfuric acid, sulfur dioxide gas is formed.	
	Bala	ance the chemical equation for this reaction.	
		$Cu +H_2SO_4 \rightarrow CuSO_4 + SO_2 +H_2O$	[1]
(e)	Sulf	fur dioxide is a reducing agent.	
		e the colour change that occurs when excess sulfur dioxide is bubbled into acidified aquecassium manganate(VII).	us
	star	ting colour of the solution	
	fina	I colour of the solution	
			[1]
(f)	Wh	en sulfuric acid reacts with ammonia the salt produced is ammonium sulfate.	
	Writ	te the chemical equation for this reaction.	
			[2]
(g)	Bar	ium sulfate is an insoluble salt.	
	Bar	ium sulfate can be made from aqueous ammonium sulfate using a precipitation reaction	١.
	(i)	Name a solution that can be added to aqueous ammonium sulfate to produce a precipita of barium sulfate.	ate
			[1]
	(ii)	Write an ionic equation for this precipitation reaction. Include state symbols.	
			[2]

[Total: 16]

		1
4		γ gen is produced by the decomposition of hydrogen peroxide. Manganese(IV) oxide is the alyst for this reaction.
	(a)	What is meant by the term catalyst?
		[2]
	(b)	A student measures the volume of oxygen produced at regular time intervals using the apparatus shown. Large lumps of manganese (${\rm IV}$) oxide are used.
		gas syringe
		manganese(IV) oxide aqueous hydrogen peroxide
		A graph of the results is shown.
		volume of oxygen produced

What happens to the rate of this reaction as time increases? In your answer, explain why the rate changes in this way.

 		[4]

time/s

(c) The experiment is repeated using the same mass of manganese(IV) oxide. Powdered manganese(IV) oxide is used instead of large lumps. All other conditions stay the same.

Sketch a graph on the axes in **(b)** to show how the volume of oxygen changes with time. [2]

(d)	In terms of particles, explain what happens to the rate of this reaction when the temperature is increased.
	[3]
(e)	The equation for the decomposition of hydrogen peroxide is shown.
	$2H_2O_2(aq) \rightarrow 2H_2O(I) + O_2(g)$
	25.0cm^3 of aqueous hydrogen peroxide forms 48.0cm^3 of oxygen at room temperature and pressure (r.t.p.).
	Calculate the concentration of aqueous hydrogen peroxide at the start of the experiment using the following steps.
	Calculate the number of moles of oxygen formed.
	 Deduce the number of moles of hydrogen peroxide that decomposed.
	mol
	• Calculate the concentration of hydrogen peroxide in mol/dm ³ .
	mol/dm³ [3]
(f)	Oxygen can also be produced by the decomposition of potassium chlorate(V), $\mathrm{KC}\mathit{lO}_3$.
	The only products of this decomposition are potassium chloride and oxygen.
	Write a chemical equation for this decomposition.
	[2]

5

	ctrolysis of concentrated aqueous sodium chloride using inert electrodes forms of trogen and sodium hydroxide.	chlorine,
(a)	What is meant by the term <i>electrolysis</i> ?	
		[2]
(b)	Name a substance that can be used as the inert electrodes.	
(- /		[1]
(c)	Write an ionic half-equation for the formation of hydrogen during this electrolysis.	
		[1]
(d)	Give the formulae of the four ions present in concentrated aqueous sodium chloride.	
		[2]
(-)	Evalois how andives hydrovide is formed during this also traduction	
(e)	Explain how sodium hydroxide is formed during this electrolysis.	
		[2] [Total: 8]
	L. Control of the con	1

(a) Pro	ppane reacts with chlorine in a photochemical reaction as shown.	
	$C_3H_8 + Cl_2 \rightarrow C_3H_7Cl + HCl$	
(i)	What type of reaction is this?	
		[1]
(ii)	What condition is needed for this photochemical reaction to occur?	
		[1]
(iii)	Draw two structural isomers of compounds with the formula $C_3H_7C\mathit{l}$. Show all of the atoms and all of the bonds.	
		[0]
		[2]
(b) Pro	opene reacts with chlorine in an addition reaction as shown.	
	$C_3H_6 + Cl_2 \rightarrow C_3H_6Cl_2$	
(i)	State why this is an addition reaction.	
		[1]

(ii) The structures of the reactants and products of this reaction are shown.

Some bond energies are shown in the table.

bond	bond energy in kJ/mol
C–C	347
C=C	612
C–H	413
C-C1	339
Cl-Cl	242

Calculate the energy change for the reaction between propene and chlorine using the following steps.

Calculate the energy needed to break the bonds.

																													k	
•	٠	٠	٠	•	٠	٠	٠	•	•	•	•	٠	٠	٠	•	•	٠	٠	٠	•	•	•	•	•	•	•	•	•	111	۰

• Calculate the energy released when bonds are formed.

K

• Calculate the energy change for the reaction between propene and chlorine.

kJ/m	ol
[;	31

(c) There are three functional groups in compound ${\bf A}$.

compound ${\bf A}$

	н н	
(i)	Name the homologous series of compounds that contains the following structures.	
	C=C	
	–OH	
	-COOH	
		[3]
(ii)	What would you observe when compound A is added to:	
	aqueous bromine	
	aqueous sodium carbonate?	
		[2]
(d) Co	ompound A can be used as a single monomer to produce two different polymers.	
(i)	Draw one repeat unit of the addition polymer formed from compound A .	
		[2]
(ii)	What type of condensation polymer is formed from compound A ?	
		[1]
	[Total:	16]

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

The Periodic Table of Elements

	110.7	 	۵ ۲	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	格	radon			
	18.7	=			6	Щ	fluorine 19	17	Cl	chlorine 35.5	35	ğ	bromine 80	53	П	iodine 127	85	¥	astatine -			
	3	>			80	0	oxygen 16	16	S	sulfur 32	34	Se	selenium 79	52	Тe	tellurium 128	84	Ъ	molonium –	116		livermorium -
	;	>			7	z	nitrogen 14	15	۵	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	<u>B</u>	bismuth 209			
	2	≥			9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	Εl	flerovium -
	=	=			2	В	boron 11	13	Ρl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204			
											30	Zu	zinc 65	48	р С	cadmium 112	80	Нg	mercury 201	112	S	copernicium -
											59	Cn	copper 64	47	Ag	silver 108	62	Au	gold 197	111	Rg	roentgenium -
	eroup										28	Ż	nickel 59	46	Pd	palladium 106	78	చ	platinum 195	110	Ds	darmstadtium -
	5				7						27	ပိ	cobalt 59	45	格	rhodium 103	77	ı	iridium 192	109	Ĭ	meitnerium -
			- I	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	92	Os	osmium 190	108	Hs	hassium
								1			25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium
					_	loq	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	g	niobium 93	73	<u>a</u>	tantalum 181	105	В	
						atc	len 				22	j	titanium 48	40	Zr	zirconium 91	72	茔	hafnium 178	104	¥	rutherfordium -
											21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids	
	:	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	56	Ba	barium 137	88	Ra	radium
		_			က	=	lithium 7	#	Na	sodium 23	19	×	potassium 39	37	В	rubidium 85	22	S	caesium 133	87	ᇁ	francium -

7.1 Lu	lutetium 175	103	۲	lawrencium	ı
° A	ytterbium 173	102	8	nobelium	ı
e9 Tm	thulium 169	101	Md	mendelevium	ı
88 Fr	erbium 167	100	Fm	ferminm	ı
67 Ho	holmium 165	66	Es	einsteinium	I
% Dv	dysprosium 163	86	ŭ	californium	I
e5 Tb	terbium 159	62	æ	berkelium	I
Gd	gadolinium 157	96	Cm	curium	ı
e3 Eu	europium 152	92	Am	americium	ı
62 Sm	samarium 150	94	Pu	plutonium	ı
Pm	promethium	93	d	neptunium	ı
9 PN	neodymium 144	92	\supset	uranium	238
59 Pr	praseodymium 141	91	Ра	protactinium	231
Se Ce	cerium 140	06	Ч	thorium	232
57 La	lanthanum 139	88	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).