

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 0620/31

Paper 3 Theory (Core)

May/June 2020

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

1	(a)	A list of	symbols	and	formulae	is shown.
---	-----	-----------	---------	-----	----------	-----------

Al³⁺
CH₄
CO₂
Fe³⁺
N₂
NO₂
O²⁻
Zn²⁺

Answer the following questions about these symbols and formulae. Each symbol or formula may be used once, more than once or not at all.

Which symbol or formula represents:

(1)	a compound which contributes to acid rain	
		[1]
(ii)	a compound which is a product of respiration	
		[1]
(iii)	a gas which forms 21% of clean dry air	
		[1]
(iv)	an ion which forms a red-brown precipitate when added to aqueous sodium hydroxide	
		[1]
(v)	an ion formed when an atom gains electrons?	
		[1]

(b) Complete the table to show the relative charge and approximate relative mass of a proton, a neutron and an electron.

type of particle	relative charge	approximate relative mass
proton	+1	
neutron		
electron		1 2000

[3]

(c)	Deduce the	number o	f electrons ar	nd neutrons	in an a	atom of th	he isotope	of iron	shown
-----	------------	----------	----------------	-------------	---------	------------	------------	---------	-------

	⁵⁸ Fe	
number of electrons		
number of neutrons		 [2]
		L-

[Total: 10]

2 A solution is obtained by filtering a mixture of soil and water. The table shows the mass of some of the ions in 1000 cm³ of this solution.

name of ion	formula of ion	mass of ion in 1000 cm ³ of soil solution/mg		
aluminium	Al ³⁺	0.1		
	NH ₄ ⁺	35.0		
calcium	Ca ²⁺	1.3		
iron(II)	Fe²+	47.0		
magnesium	Mg ²⁺	0.2		
	NO ₃ -	23.0		
phosphate	PO ₄ ³⁻	4.2		
potassium	K ⁺	99.0		
sulfate	SO ₄ ²⁻	7.5		

(a)	Ans	wer these questions using the information in the table.	
	(i)	Which negative ion has the lowest concentration?	
		[1]
	(ii)	State the name of the NO ₃ ⁻ ion.	
		[1]
	(iii)	Calculate the mass of phosphate ions in 250 cm ³ of this solution.	
		mass = mg [1]
	(iv)	Name the compound that contains NH_4^+ ions and PO_4^{3-} ions.	
		[1]
/b\	Dos	pariba a toat for nataonium iona	
(D)	Des	scribe a test for potassium ions.	
	test		
	obo	onvotiona	

[2]

(c)	The names and formulae for some compounds are shown.
	aluminium phosphate, A <i>l</i> PO ₄ calcium phosphate, Ca ₃ (PO ₄) ₂
	potassium phosphate, K ₃ PO ₄

Deduce the formula for magnesium phosphate.

[1]

3 Many compounds and elements have important uses.

(a) Complete the table to show the name, formula and use of each compound and element.

		1	
name of compound or element	number of atoms in the formula	formula	use
chlorine	chlorine = 2	Cl_2	
	carbon = 1 hydrogen = 4	CH₄	
calcium carbonate	calcium = 1 carbon = 1 oxygen = 3		

[5]

(b) The table shows the minimum temperature for the reduction of four metal oxides by carbon.

metal oxide	minimum temperature for reduction by carbon
calcium oxide	not reduced at 1530°C
iron(II) oxide	reduced at 650 °C
titanium oxide	reduced at 1530°C
zinc oxide	reduced at 720 °C

Put the four metals in order of their reactivity. Put the least reactive metal first.

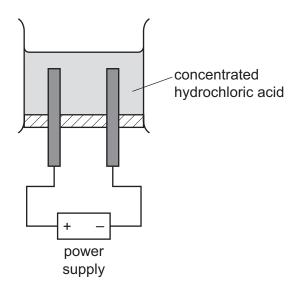
least reactive —		-	most reactive

[2]

(c)	Anh	nydrous copper(II) sulfate, CuSO ₄ , is used to test for water.	
	(i)	Describe the change in colour when water is added to anhydrous $copper(II)$ sulfate.	
		from to	[2]
	(ii)	This reaction is reversible.	
		Describe how this reaction can be reversed.	
			. [1]
	(iii)	State one use of water in industry.	
			. [1]
		[Tota	l: 11]

4 The properties of five alkenes at room temperature are shown in the table.

alkene	number of carbon atoms in a molecule	state at room temperature	density in g/cm³	boiling point
ethene	2	2 gas		-104
propene	3	gas	0.0018	-47
butene	4	gas	0.0024	
pentene	5	liquid	0.64	30
hexene	6	liquid	0.67	63


		· · · · · · · · · · · · · · · · · · ·	
(a)	Ans	swer these questions using only the information in the table.	
	(i)	Predict the boiling point of butene.	
		······································	C [1
	(ii)	Describe the general trend in the density of the alkenes.	
			[1
((iii)	Suggest why the densities of the first three alkenes are much lower than the dens pentene and hexene.	ity o
			[1
(b)	(i)	Complete the chemical equation for the complete combustion of propene.	
		$2C_3H_6 + \dots O_2 \rightarrow 6CO_2 + 6H_2O$	[1
	(ii)	Describe a test for carbon dioxide.	
		test	
		observations	[2
((iii)	Universal indicator is added to an aqueous solution of carbon dioxide.	
		What colour change is observed?	
		from green to	
		Give a reason for your answer.	

[2]

C)	vvn	en propene undergoes incomplete combustion, carbon monoxide is formed.	
	(i)	What condition is needed for incomplete combustion?	
			. [1]
	(ii)	Give one adverse effect of carbon monoxide on health.	
			. [1]
		[Total	: 10]

5 When concentrated hydrochloric acid is electrolysed, gases are produced at the electrodes.

The incomplete apparatus is shown.

- (a) (i) Complete the diagram by:
 - labelling the anode and cathode
 - showing how the gases are collected.

[2]

(ii) Predict the products of this electrolysis at the:

positive electrode	
negative electrode.	
3	[2]

(iii) Graphite (carbon) electrodes are used in this electrolysis.

Suggest **one** other element that can be used as an electrode and give a reason, other than that it can conduct electricity.

element	
reason	
	[2]

(b) Hydrogen chloride is produced when chlorine reacts with hydrogen.

Complete the chemical equation for this reaction.

$$Cl_2 + \dots \rightarrow \dots HCl$$
 [2]

(c	:)	Aqueous	chlorine	reacts	with	aqueous	sodium	iodide.
10	'/	/ Iqucous	CHICHIC	reacts	VVICII	aqueous	Sodiaiii	IOUI

$$Cl_2$$
 + 2NaI \rightarrow I_2 + 2NaC l

(i)	How does this reaction show that chlorine is more reactive than iodine?	
		[1]
(ii)	What colour is iodine in aqueous solution?	
		[1]
	[Total:	101

6 Acids have characteristic p	properties.
-------------------------------	-------------

(a) Hydrochloric acid reacts with magnesium.

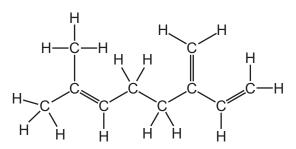
Name the products of this reaction and give the observations.	
	••••

(b) The rate of reaction of iron(II) carbonate with hydrochloric acid can be determined by measuring the time taken to produce $20\,cm^3$ of carbon dioxide.

A student measured the time taken to produce 20 cm³ of carbon dioxide at three different temperatures.

In each experiment the student used:

- 1 g of large pieces of iron(II) carbonate
- dilute hydrochloric acid of the same concentration and volume.

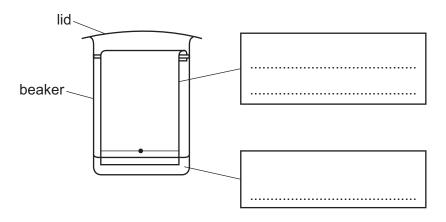

The results are shown in the table.

temperature /°C	time /s
20	38
25	30
30	19

			30		19							
(i)	Use the information in temperature.	the	table	to	describe	how	the	rate	of	reaction	changes	with
												[1]

	(ii)		scribe tl		ct of e	each o	of the	followin	g on the	e rate	of this	reaction	at	constant
		•	Smalle	r pieces	s of iro	n(II) c	arbon	ate are ı	used.					
		All	other co	nditions	s stay t	the sar	me.							
		•	The co	ncentra	ition of	hydro	chlori	c acid is	decreas	ed.				
		All	other co	nditions	s stay t	the sar	me.							
						• • • • • • • • • • • • • • • • • • • •								[2]
(c)	The	e rea	ction of	iron(II)	carboı	nate w	rith hyd	drochlor	ic acid is	exoth	ermic.			
	Wh	at is	meant l	by the to	erm <i>ex</i>	othern	nic?							
														[1]
(d)	Rus	st co	ntains c	ompoui	nds of	iron.								
	Sta	te tv	vo cond	itions n	eeded	for iro	n to ru	ıst.						
						• • • • • • • • • • • • • • • • • • • •								
														[2]
(e)	Iror	n and	d magne	esium a	re both	used	in allo	oys.						
	Wh	ich c	one of th	nese dia	agrams	s, A, B	, C or	D , best	represer	nts an a	alloy?			
			Α			В			С			D		
)	
		O						C))	
														[1]
													L	Total: 11]

7 The structure of myrcene is shown.


(a)	Deduce the	tormula of	myrcene to	snow the	number of	or atoms or	carbon and	nyarogen.	

.....[1]

(b) Myrcene is found in some plants.

The coloured compounds in plant leaves can be separated by chromatography.

Complete the diagram by putting the correct labels in the boxes.

[2]

[3]

(c) Myrcene is an unsaturated hydrocarbon.

(d) Butane is a saturated hydrocarbon.

To which homologous series does butane belong?

Draw a circle around the correct answer.

alcohol alkane alkene carboxylic acid [1]

(e) Large hydrocarbons can be cracked to form smaller hydrocarbons.

Complete the chemical equation for cracking tridecane, $C_{13}H_{28}$, to form an alkene and one other hydrocarbon.

$$C_{13}H_{28} \rightarrow C_3H_6 + \dots$$
 [1]

(f) Ethene is an alkene.

Draw the structure of ethene showing all of the atoms and all of the bonds.

[1]

(g) Complete the sentences about the separation of hydrocarbons from petroleum using words from the list.

[Total: 12]

8 The diagram shows part of the structures of sodium bromide and sulfur.

sodium bromide	sulfur
Na ⁺ Br Na ⁺ Br Na ⁺ Br Na ⁺ Br Na ⁺ Br Na ⁺ Br Na ⁺ Br Na ⁺ Br Na ⁺ Br Na ⁺ Na ⁺	

(a) Describe both sodium bromide and sulfur in terms of:

•	bonding
•	electrical conductivity
•	solubility in water.
	[5]
Sul	fur is an element.
Wh	at is meant by the term <i>element</i> ?
	[1]

© UCLES 2020 0620/31/M/J/20

(b)

c)	Soc	odium can be extracted from sodium bromide by electrolysis	
	Soc	odium is a metal in Group I of the Periodic Table.	
	(i)	Describe one chemical property of sodium.	
			[1]
	(ii)	Which two of these statements about the physical proper	ties of sodium are correct?
		Tick two boxes.	
		Sodium is very hard.	
		Sodium has a high density.	
		Sodium conducts electricity.	
		Sodium is malleable.	
		Sodium does not conduct heat.	Į.O.
			[2]

[Total: 9]

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

The Periodic Table of Elements

								Gro	Group								
=													≥	>		₹	₹
							- I										2 He
Key	Key	Key	Key				hydrogen 1										helium 4
4 atomic number	atomic number	atomic number	tomic number									2	9	7	8	6	10
Be atomic symbol	atomic symbol	atomic symbol	mic symbol	loc								В	ပ	z	0	ட	Ne
beryllium name 9 relative atomic mass	name relative atomic mass	name relative atomic mass	name live atomic mass	SS								boron 11	carbon 12	nitrogen 14	oxygen 16	fluorine 19	neon 20
12												13	14	15	16	17	18
Mg												Αl	Si	₾	ഗ	Cl	Ā
magnesium 24												aluminium 27	silicon 28	phosphorus 31	sulfur 32	chlorine 35.5	argon 40
21 22 23 24	22 23 24	23 24	24			55	26	27	28	29	30	31	32	33	34	35	36
Sc Ti Cr	, C	ပ် >	ပ်		2	Mn	Fe	ပိ	Z	Cn	Zu	Ga	Ge	As	Se	Ā	궃
calcium scandium titanium vanadium chromium mang 40 45 48 51 52 5	titanium vanadium chromium r 48 51 52	vanadium chromium r 51 52	chromium r		mang	nanganese 55	iron 56	cobalt 59	nickel 59	copper 64	zinc 65	gallium 70	germanium 73	arsenic 75	selenium 79	bromine 80	krypton 84
39 40 41 42	40 41 42	41 42	42			43	44	45	46	47	48	49	50	51	52	53	54
Y Zr Nb Mo	Zr Nb Mo	Nb Mo	Mo			ان.	Ru	뫈	Pd	Ag	ည	In	Sn	Sb	Те	Н	Xe
zirconium niobium molybdenum 91 93 96	zirconium niobium molybdenum 91 93 96	niobium molybdenum 93 96	molybdenum 96		techr	netium -	ruthenium 101	rhodium 103	palladium 106	silver 108	cadmium 112	indium 115	tin 119	antimony 122	tellurium 128	iodine 127	xenon 131
57–71 72 73 74	72 73 74	73 74	74			75	92	77	78	62	80	81	82	83	84	85	98
lanthanoids Hf Ta W	Hf Ta W	Ta W	>		ш	Şe	Os	Ľ	풉	Αn	БĤ	11	Pb	<u>B</u>	Ъо	¥	R
tantalum tungsten 181 184	tantalum tungsten 181 184	tantalum tungsten 181 184	tungsten 184		£.	rhenium 186	osmium 190	iridium 192	platinum 195	gold 197	mercury 201	thallium 204	lead 207	bismuth 209	molonium –	astatine	radon
89–103 104 105 106	104 105 106	105 106	106			107	108	109	110	111	112		114		116		
actinoids Rf Db Sg	Rf Db Sg	Db Sg	Sg			Bh	Hs	¥	Ds		ű		Εl		_		
	dubnium seaborgium	dubnium seaborgium	seaborgium			oohrium	hassium	meitnerium	damstadtium	9	copernicium		flerovium		livermorium		
		1	_	\dashv				ı	-		ı		ı		ı		

Lu Lu	lutetium 175	103	۲	lawrencium	ı
vo Yb	ytterbium 173	102	8	nobelium	ı
e9 Tm	thulium 169	101	Md	mendelevium	ı
68 Er	erbium 167	100	Fm	fermium	ı
67 Ho	holmium 165	66	Es	einsteinium	ı
66 Dy	dysprosium 163	86	ŭ	californium	ı
e5 Tb	terbium 159	97	BK	berkelium	ı
Gd Gd	gadolinium 157	96	Cm	curium	ı
63 Eu	europium 152	92	Am	americium	I
62 Sm	samarium 150	94	Pn	plutonium	ı
e1 Pm	promethium -	93	δ	neptunium	I
9 P N	neodymium 144	92	\supset	uranium	238
59 Pr	praseodymium 141	91	Ра	protactinium	231
Se Ce	cerium 140	06	Ч	thorium	737
57 La	lanthanum 139	88	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).