

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

CHEMISTRY 0620/41

Paper 4 Theory (Extended)

May/June 2018

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

A copy of the Periodic Table is printed on page 12.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

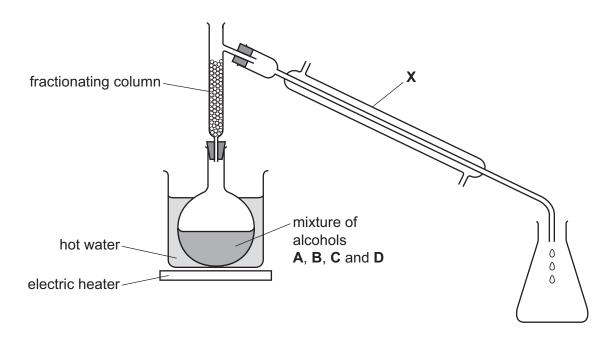
The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

1 Substances can be classified as elements, compounds or mixtures.

(a)

(b)

What is meant by the term <i>compound</i> ?
[2]
Mixtures can be separated by physical processes.
A sequence of physical processes can be used to separate common salt (sodium chloride) from a mixture containing sand and common salt only.
Give the order and the correct scientific term for the physical processes used to separate the common salt from the mixture.
1


2

[4]

The boiling points of four different alcohols, **A**, **B**, **C** and **D**, are shown.

alcohol	Α	В	С	D
boiling point/°C	56	78	122	160

(c) A student suggested that the apparatus shown could be used to separate the mixture of alcohols.

(i)	Apparatus X needs to have cold water flowing through it.
	Draw an arrow on the diagram to show where the cold water enters apparatus X.
	Name apparatus X.
	[2
(ii)	Part of the fractionating column is missing. This means that the experiment will not work.
	Draw on the diagram the part of the fractionating column which is missing.
	Explain why the experiment will not work with this part of the fractionating column missing.
	[2]
iii)	Suggest why a Bunsen burner is not used to heat the flask.
	[1]
iv)	A hot water bath cannot be used to separate alcohols C and D .
	Explain why.
	[2]
	[Total: 13

Flei	roviu	ım, F <i>l</i> , atom	nic number 114, was firs	st made in research lab	ooratories in 1998.	
(a)		rovium was ment Z .	made by bombarding a	atoms of plutonium, Pu,	atomic number 94, wit	h atoms of
	•		us of one atom of plutoned the nucleus of one a		nucleus of one atom of	element Z .
	Su	ggest the ide	entity of element Z .			
						[1]
(b)	In v		d of the Periodic Table i			[41
						[1]
(c)	Pre	edict the nur	mber of outer shell elec	trons in an atom of fler	ovium.	
						[1]
(d)			of flerovium are ²⁸⁶ F <i>l</i> and	d ²⁸⁹ F <i>l</i> . The nuclei of bo	oth of these isotopes ar	e unstable
			gy when they split up.			
	(i)		erm used to describe is			[4]
	(ii)		the table to show the nu			
	(11)	the isotope		arriber of protoris, fiedti	ons and electrons in th	e atoms or
		isotope	number of protons	number of neutrons	number of electrons	
		²⁸⁶ F <i>l</i>				
		²⁸⁹ F <i>l</i>				
			1	I		[2]
(e)			ly small number of atom erovium have not yet be		en made in the laborato	ry and the
	lt h	as been su	ggested that flerovium i	s a typical metal.		
	(i)	Suggest tv	wo physical properties	of flerovium.		
		1				
		2				[2]
	(ii)	Suggest o	ne chemical property o	f flerovium oxide.		[-]
	\ -/					[1]
						[Total: 9]

3

Thi	s question is about iron.
(a)	Three of the raw materials added to a blast furnace used to extract iron from hematite are coke, hematite and limestone.
	Name one other raw material added to the blast furnace.
	[1]
(b)	A series of reactions occurs in a blast furnace during the extraction of iron from hematite.
	Describe these reactions.
	 one chemical equation for the reduction of hematite one chemical equation for the formation of slag.
	[5]
(c)	The iron extracted from hematite using a blast furnace is impure.
	Identify the main impurity in this iron and explain how it is removed in the steel-making process.
	main impurity
	how it is removed
	[3]
	[Total: 9]

This question is about masses, volumes and moles.
(a) Which term is defined by the following statement?
The average mass of naturally occurring atoms of an element on a scale where the ¹² C atom has a mass of exactly 12 units.
[
(b) Butane, C₄H₁₀, has a relative molecular mass of 58. Potassium fluoride, KF, has a relative formula mass of 58.
Explain why the term relative molecular mass can be used for butane but cannot be used for potassium fluoride.
[2
(c) A 0.095g sample of gaseous element Y occupies 60.0 cm³ at room temperature and pressure
 Determine the number of moles of element Y in 60.0 cm³.
moles of element Y = mo
 Calculate the relative molecular mass of element Y and hence suggest the identity of element Y.
relative molecular mass =
identity of element Y =[3

	,
(d)	A 1.68 g sample of phosphorus was burned and formed 3.87 g of an oxide of phosphorus.
	Calculate the empirical formula of this oxide of phosphorus.
	empirical formula = [4]
(e)	Another oxide of phosphorus has the empirical formula P_2O_3 . One molecule of this oxide of phosphorus contains four atoms of phosphorus.
	Calculate the mass of one mole of this oxide of phosphorus.
	mass = g [2]
	[Total: 12]

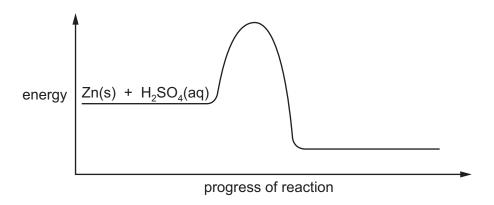
5 (a) The table gives some chemical properties of transition elements and their compounds, and of Group I elements and their compounds.

chemical property	transition elements	Group I elements
ability to act as catalysts	yes	no
exist as coloured compounds	yes	no

(i	i)	What is	meant	bγ	the	term	catal	vsť
(I	ı)	vviial 15	meant	υy	uie	renni	Calai	y:

 	 	 	 	 [2]

(ii) Give **one** other chemical property shown by transition elements which is **not** shown by Group I elements.


.....[1]

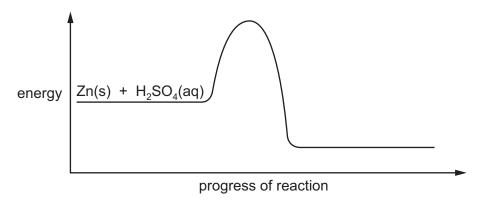
(b) Give **two** physical properties shown by transition elements which are **not** shown by Group I elements.

1	
2	

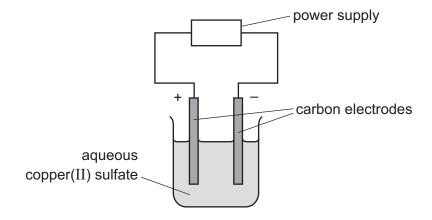
[2]

(c) The energy level diagram shows the energy profile for the reaction between zinc and dilute sulfuric acid.

(i) Complete the diagram by adding the formulae of the products. Include state symbols. [3]


(ii) Draw an arrow on the diagram to represent the activation energy. [1]

(iii) Is the reaction endothermic or exothermic? Explain your answer.


	 	 	 	[1]

(d) The reaction between zinc and dilute sulfuric acid can be catalysed by the addition of aqueous copper(II) sulfate.

On the diagram, add the energy profile for the catalysed reaction.

(e) A student electrolyses aqueous copper(Π) sulfate using the apparatus shown.

Oxygen gas forms at the positive electrode (anode).

	,	
(i)	Write an ionic half-equation for the reaction at the negative electrode (cathode). Inclustate symbols.	ude
		[3]
(ii)	Describe what the student observes at the negative electrode.	
		[1]
iii)	Give two other observations which the student makes during the electrolysis.	
	1	
	2	
		[2]
iv)	What difference would the student observe at the positive electrode if the aque copper(II) sulfate were replaced by concentrated aqueous copper(II) chloride?	ous

[Total: 18]

[1]

6 The table shows the structures of four hydrocarbons.

Р	Q	R	s
CH ₃ -CH ₃	CH ₂ =CH ₂	CH ₂ =CH-CH ₃	CH ₂ =CH-CH ₂ -CH ₃

(a)	Why are compounds P, Q, R and S known as hydrocarbons?									
(b)	Cor	mpound P is saturated.								
	Wh	at is meant by the term saturated?								
(c)	Cor	mpound P undergoes a substitution reaction with chlorine. What is meant by the term substitution reaction?	[.]							
	(ii)	State a condition required for this reaction to occur.								
((iii)	Write a chemical equation for this reaction.	[1]							
			[2]							
(d)	Cor	mpound R undergoes an addition reaction with bromine.								
	(i)	Why is this reaction an addition reaction?								
	(ii)	A compound containing bromine is formed in this reaction.	[1]							
		Draw the structure of this compound. Show all of the atoms and all of the bonds.								

(e)	Draw the structure of an unbranched isomer of compound S . Show all of the atoms and a the bonds. Name this unbranched isomer of compound S .	II of
	structure	
	name	
(f)	Compound Q undergoes polymerisation.	[2]
(-)	(i) Name the polymer formed.	
		[1]
	(ii) Complete the chemical equation to show the polymerisation of compound Q.	
	$n \mathrm{CH_2=CH_2} \longrightarrow$	
	77 3112 7	[2]
(g)	Amino acids undergo polymerisation to form proteins. Part of a protein molecule with linkages missing is shown.	
	Draw the linkages on the diagram. Show all of the atoms and all of the bonds.	
	H —N———————————————————————————————————	
		[2]
(h)	The structure shows an ester.	
	CH_3 — CH_2 — CH_2 — CH_3	
	$O-CH_2-CH_3$	
	Write the word equation for a reaction which could be used to make this ester.	
		[3]
	[Total:	19]

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

The Periodic Table of Elements

	=	2 He	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	R	radon			
	₹			6	ш	fluorine 19	17	Cl	chlorine 35.5	35	ă	bromine 80	53	П	iodine 127	85	Ą	astatine -			
	>			80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ъ	polonium -	116		livermorium –
	>			7	z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	Ξ	bismuth 209			
	≥			9	ပ	carbon 12	14	SS	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	Εl	flerovium —
	≡			5	В	boron 11	13	Ρl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204			
							•			30	Zu	zinc 65	48	ပ	cadmium 112	80	Нg	mercury 201	112	S	copernicium –
										29	Cn	copper 64	47	Ag	silver 108	62	Au	gold 197	111	Rg	roentgenium -
Group	dno									28	Z	nickel 59	46	Pd	palladium 106	78	చ	platinum 195	110	Ds	darmstadtium -
Green										27	ပိ	cobalt 59	45	格	rhodium 103	77	٦	iridium 192	109	Μţ	meitnerium -
2 2 3 3 4 5 5		- I	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	92	Os	osmium 190	108	Hs	hassium –
										25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	Bh	bohrium —
					pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -
			Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	q	niobium 93	73	<u>n</u>	tantalum 181	105	Ср	dubnium –
					ato	rek				22	j	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	Ŗ	rutherfordium -
										21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	56	Ba	barium 137	88	Ra	radium -
	_			က	:=	lithium 7	1	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	55	Cs	caesium 133	87	Ā	francium —

71	Γn	lutetium	175	103	۲	lawrencium	I
	Υp	-				_	
69	Ш	thulium	169	101	Md	mendelevium	1
89	Ē	erbinm	167	100	Fm	ferminm	ſ
29	웃	holmium	165	66	Es	einsteinium	1
99	Dy	dysprosium	163	86	ర	californium	ſ
99	Тр	terbium	159	26	æ	berkelium	ſ
64	В	gadolinium	157	96	CB	curium	ſ
63	En	europium	152	92	Am	americium	1
62	Sm	samarium	150	94	Pn	plutonium	1
61	Pm	promethium	ı	93	dN	neptunium	1
09	ρN	neodymium	144	92	\supset	uranium	238
59	Ā	praseodymium	141	91	Ра	protactinium	231
28	Se	cerium	140	06	Ļ	thorium	232
22	Гa	lanthanum	139	88	Ac	actinium	I

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).