

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

0620/22 **CHEMISTRY**

May/June 2018 Paper 2 Multiple Choice (Extended)

45 minutes

Additional Materials: Multiple Choice Answer Sheet

Soft clean eraser

Soft pencil (type B or HB is recommended)

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid.

Write your name, Centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you.

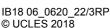
DO **NOT** WRITE IN ANY BARCODES.

There are forty questions on this paper. Answer all questions. For each question there are four possible answers A, B, C and D.

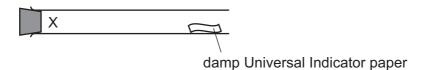
Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

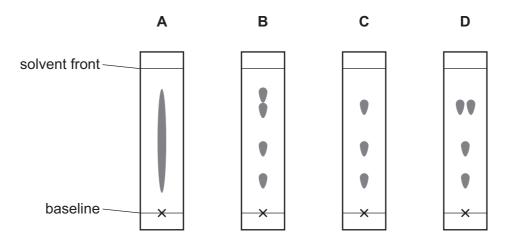

Any rough working should be done in this booklet.

A copy of the Periodic Table is printed on page 16.


Electronic calculators may be used.

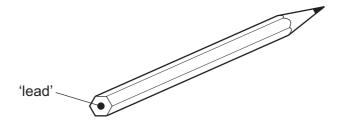
The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate. This document consists of 13 printed pages and 3 blank pages.

1 A gas is released at point X in the apparatus shown.



Which gas turns the damp Universal Indicator paper red most quickly?

- **A** ammonia, NH₃
- **B** chlorine, Cl₂
- **C** hydrogen chloride, HCl
- **D** sulfur dioxide, SO₂
- **2** A chromatography experiment was done to separate a mixture of four substances.


The R_f values measured for these substances were 0.3, 0.5, 0.8 and 0.8.

Which diagram shows the chromatogram obtained?

- **3** Which piece of apparatus **cannot** be used to collect and measure the volume of gas produced in an experiment?
 - A burette
 - B gas syringe
 - **C** measuring cylinder
 - **D** pipette

4 The 'lead' in a pencil is made of a mixture of graphite and clay.

When the percentage of graphite is increased, the pencil slides across the paper more easily.

Which statement explains this observation?

- **A** Graphite has a high melting point.
- **B** Graphite is a form of carbon.
- C Graphite is a lubricant.
- **D** Graphite is a non-metal.

5 Which pair shows particles with the same chemical properties?

- **A** $^{23}_{11}M$ and $^{23}_{11}M^+$
- **B** $^{23}_{11}$ M and $^{24}_{11}$ M
- **C** $^{23}_{11}$ M and $^{23}_{12}$ M
- **D** $^{24}_{11}\text{M}^+$ and $^{24}_{12}\text{M}^+$

6 Which substances have similar structures?

- A diamond and graphite
- **B** diamond and silicon(IV) oxide
- **C** graphite and poly(ethene)
- **D** graphite and silicon(IV) oxide

7 Which substance is **not** a macromolecule?

- A diamond
- **B** graphite
- C silicon(IV) oxide
- **D** sulfur

8 The equation for the reaction between potassium carbonate and nitric acid is shown.

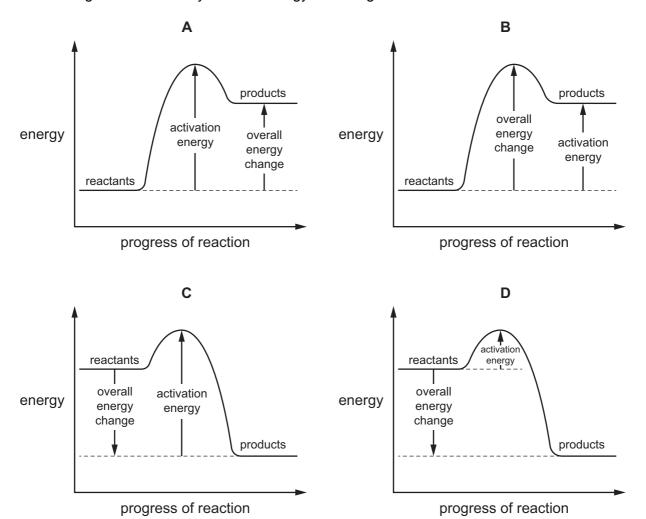
$$K_2CO_3 + 2HNO_3 \rightarrow 2KNO_3 + H_2O + CO_2$$

Which volume of carbon dioxide is produced from 69 g of potassium carbonate?

- \mathbf{A} 6 dm³
- **B** 12 dm³
- **C** 24 dm³
- **D** 48 dm³
- **9** A solution of sodium carbonate, Na₂CO₃, has a concentration of 0.03 mol/dm³.

Which mass of sodium carbonate is dissolved in 1 dm³ of this solution?

- **A** 1.06 g
- **B** 3.18 g
- **C** 10.60 g
- **D** 31.80 g
- **10** Aqueous copper(II) sulfate is electrolysed using copper electrodes.


Which statement about the electrolysis is **not** correct?

- **A** An oxidation reaction occurs at the positive electrode.
- **B** The current is carried through the electrolyte by ions.
- **C** The negative electrode gains mass.
- **D** The number of copper(II) ions in the electrolyte decreases.
- **11** Dilute sulfuric acid is electrolysed using inert electrodes.

What are the ionic half-equations for the reactions that take place at each electrode?

	positive electrode	negative electrode
Α	$2H^{+} + 2e^{-} \rightarrow H_{2}$	$4OH^- \rightarrow 2H_2O + O_2 + 4e^-$
В	$2H^{+} + 2e^{-} \rightarrow H_{2}$	$4OH^- + 4H^+ \rightarrow 4H_2O$
С	$4OH^{-} \rightarrow 2H_{2}O + O_{2} + 4e^{-}$	$2H^+ + 2e^- \rightarrow H_2$
D	$4\text{OH}^- + 4\text{H}^+ \rightarrow 4\text{H}_2\text{O}$	$2H^+ + 2e^- \rightarrow H_2$

12 Which diagram is a correctly labelled energy level diagram for an endothermic reaction?

13 The equation for the complete combustion of methane is shown.

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$$

The bond energies are shown in the table.

bond	bond energy in kJ/mol
C–H	+410
C=O	+805
O–H	+460
O=O	+496

What is the energy change for the reaction?

A -818 kJ/mol **B** -359 kJ/mol **C** -323 kJ/mol **D** +102 kJ/mol

14 Which row describes the effects of increasing both concentration and temperature on the collisions between reacting particles?

	increasing concentration	increasing temperature
Α	more collisions per second only	more collisions per second only
В	more collisions per second and more collisions with sufficient energy to react	more collisions per second only
С	more collisions per second only	more collisions per second and more collisions with sufficient energy to react
D	more collisions per second and more collisions with sufficient energy to react	more collisions per second and more collisions with sufficient energy to react

15 Sulfur dioxide reacts with oxygen at 2 atmospheres pressure. The forward reaction is exothermic.

The equation for the reaction is shown.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

The reaction reaches equilibrium. The pressure is then doubled.

How and why does the amount of sulfur trioxide formed change?

	amount of sulfur trioxide	reason
Α	decreases	the forward reaction is exothermic
В	decreases	there are fewer molecules on the right
С	increases	the forward reaction is exothermic
D	increases	there are fewer molecules on the right

16 Iron(II) chloride solution reacts with chlorine gas.

The equation is shown.

$$2FeCl_2(aq) + Cl_2(g) \rightarrow 2FeCl_3(aq)$$

Which statements about this reaction are correct?

- 1 Fe²⁺ ions are reduced to Fe³⁺ ions.
- 2 Chlorine acts as a reducing agent.
- 3 Fe²⁺ ions each lose an electron.
- 4 Cl_2 molecules are reduced to Cl^- ions.

A 1 and 2 **B** 2 and 3 **C** 2 and 4 **D** 3 and 4

- 17 Which statement about oxides is correct?
 - A A solution of magnesium oxide has a pH less than pH 7.
 - **B** A solution of sulfur dioxide has a pH greater than pH 7.
 - **C** Magnesium oxide reacts with nitric acid to make a salt.
 - **D** Sulfur dioxide reacts with hydrochloric acid to make a salt.
- 18 Which statement about acids and bases is correct?
 - A A base is a donor of hydrogen ions.
 - **B** An acid is an acceptor of protons.
 - **C** A strong acid is fully ionised in aqueous solution.
 - **D** A weak acid cannot be used to neutralise a strong base.
- **19** The solubility of some salts is shown.

	chloride	nitrate	sulfate	carbonate		
barium	soluble	soluble	insoluble	insoluble		
lead(II)	insoluble	soluble	insoluble	insoluble		
potassium	soluble	soluble	soluble	soluble		
zinc	soluble	soluble	soluble	insoluble		

Which two aqueous solutions produce an insoluble salt when mixed together?

- A barium chloride and zinc nitrate
- **B** barium nitrate and lead(II) nitrate
- **C** lead(II) nitrate and potassium carbonate
- **D** potassium nitrate and zinc sulfate
- **20** Which methods are suitable for preparing **both** zinc sulfate and copper(II) sulfate?
 - 1 reacting the metal oxide with warm dilute aqueous sulfuric acid
 - 2 reacting the metal with dilute aqueous sulfuric acid
 - 3 reacting the metal carbonate with dilute aqueous sulfuric acid
 - **A** 1, 2 and 3 **B** 1 and 2 only **C** 1 and 3 only **D** 2 and 3 only

- 21 Which statement about the Periodic Table is correct?
 - A Elements in the same group have the same number of electron shells.
 - **B** It contains elements arranged in order of increasing proton number.
 - **C** Metals are on the right and non-metals are on the left.
 - **D** The most reactive elements are at the bottom of every group.
- 22 Chlorine, bromine and iodine are elements in Group VII of the Periodic Table.

Which statement about these elements is **not** correct?

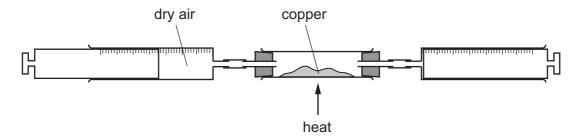
- **A** The colour gets darker down the group.
- **B** The density increases down the group.
- **C** They are all gases at room temperature and pressure.
- **D** They are all non-metals.
- 23 Which row describes the properties of a transition element?

	property 1	property 2					
Α	forms colourless compounds	acts as a catalyst					
В	forms colourless compounds	low electrical conductivity					
С	high density	acts as a catalyst					
D	high density	low electrical conductivity					

24 Stainless steel is an alloy of iron, carbon and other metals.

Which row is correct?

	stainless steel is harder than pure iron	stainless steel resists corrosion better than pure iron
Α	✓	✓
В	✓	X
С	x	✓
D	X	X


25 Metal X is more reactive than metal Y. Metal Y is more reactive than metal Z.

Which statement is correct?

- **A** When metal X is placed in a solution of Y sulfate, there is no reaction.
- **B** When metal X is placed in a solution of Z sulfate, a reaction occurs.
- **C** When metal Y is placed in a solution of Z sulfate, there is no reaction.
- **D** When metal Z is placed in a solution of X sulfate, a reaction occurs.
- 26 Which statement about the industrial extraction of zinc is correct?
 - **A** Cryolite is added to lower the melting point.
 - **B** Molten zinc oxide is electrolysed.
 - C Zinc oxide is heated with coke.
 - **D** Zinc sulfide is heated with coke.
- 27 Which row describes the use of an alloy and the property upon which the use depends?

	alloy	use	property					
Α	mild steel	cutlery	resistant to corrosion					
В	mild steel	machinery	strong					
С	stainless steel	cutlery	low density					
D	stainless steel	machinery	good conductor of electricity					

28 Dry air is passed over hot copper until all the oxygen has reacted.

The volume of gas at the end of the reaction is 120 cm³.

What is the starting volume of dry air?

- **A** 132 cm³
- **B** 152 cm³
- **C** 180 cm³
- **D** 570 cm³

29 A steel bicycle which had been left outdoors for several months was starting to rust.

What would **not** reduce the rate of corrosion?

- A Remove the rust and paint the bicycle.
- **B** Remove the rust and store the bicycle in a dry shed.
- **C** Remove the rust and wipe the bicycle with a clean, damp cloth.
- **D** Remove the rust and wipe the bicycle with an oily cloth.
- **30** Which statements about water are correct?
 - 1 Household water contains dissolved salts.
 - 2 Water for household use is filtered to remove soluble impurities.
 - 3 Water is treated with chlorine to kill bacteria.
 - 4 Water is used in industry for cooling.
 - **A** 1, 2, 3 and 4
 - **B** 1, 2 and 3 only
 - C 1, 3 and 4 only
 - **D** 2, 3 and 4 only
- 31 Ammonia is manufactured by reacting hydrogen with nitrogen in the Haber process.

Which row describes the sources of hydrogen and nitrogen and the conditions used in the manufacture of ammonia in the Haber process?

	source of hydrogen	source of nitrogen	temperature of reaction/°C	pressure of reaction / atm
Α	air	natural gas	250	2
В	air	natural gas	250	200
С	natural gas	air	450	2
D	natural gas	air	450	200

- **32** Which statements about the carbon cycle are correct?
 - 1 Carbon dioxide is added to the atmosphere by respiration.
 - 2 Carbon dioxide is added to the atmosphere by combustion of coal.
 - 3 Carbon dioxide is removed from the atmosphere by photosynthesis.
 - **A** 1, 2 and 3 **B** 1 and 2 only **C** 1 and 3 only **D** 2 and 3 only

33 Which row describes the uses of sulfur and sulfur dioxide?

	sulfur	sulfur dioxide
Α	extraction of aluminium	food preservative
В	extraction of aluminium	water treatment
С	manufacture of sulfuric acid	food preservative
D	manufacture of sulfuric acid	water treatment

34 Limestone is used in many industrial processes.

In which process is it **not** used?

- A manufacture of alkenes
- **B** manufacture of cement
- **C** manufacture of iron
- **D** manufacture of lime

35 What is **not** the correct use of the fraction named?

	name of fraction	use
Α	fuel oil	making waxes
В	gas oil	fuel in diesel engines
С	kerosene	jet fuel
D	naphtha	making chemicals

- **36** Which statement about alkenes is **not** correct?
 - **A** They decolourise aqueous bromine.
 - **B** They only contain the elements carbon and hydrogen.
 - **C** They react with hydrogen to form alkanes.
 - **D** They react with steam to produce carboxylic acids.
- 37 Which substances can be obtained by cracking hydrocarbons?
 - A ethanol and ethene
 - B ethanol and hydrogen
 - **C** ethene and hydrogen
 - **D** ethene and poly(ethene)

38 Two processes used for the large-scale production of ethanol are shown.

process 1 A compound containing carbon, hydrogen and oxygen is used to produce

process 2 A compound containing carbon and hydrogen only is used to produce ethanol.

Which statement is correct?

- **A** Process 1 uses a renewable starting material.
- **B** Process 1 is done at a very high temperature.
- C Process 2 involves fermentation.
- **D** Process 2 is done at room temperature.
- **39** What is the name of the organic product of the reaction shown?

- A ethyl ethanoate
- **B** ethyl methanoate
- C methyl ethanoate
- **D** methyl propanoate
- **40** Which two compounds react together to form a condensation polymer?
 - A HOCH₂CH₂OH and CH₃COOH
 - **B** HOCH₂CH₂OH and CH₃NH₂
 - C HOCH₂CH₂OH and H₂NCH₂CH₂NH₂
 - **D** HOCH₂CH₂OH and HOOCCH₂CH₂COOH

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of Elements

		II	2 :	He	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	54	×e	xenon 131	98	格	radon								
		II/				6	ш	fluorine 19	17	Cl	chlorine 35.5	35	ğ	bromine 80	53	П	iodine 127	85	¥	astatine _								
		IN				80	0	oxygen 16	16	S	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ъо	polonium –	116	_	livermorium -					
		>							7	z	nitrogen 14	15	ட	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	<u>B</u>	bismuth 209					
		2								9	ပ	carbon 12	14	Si	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	Ŀ	flerovium	
		≡				2	М	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204								
												30	Zu	zinc 65	48	ပ	cadmium 112	80	Ρ̈́	mercury 201	112	ပ်	copernicium -					
												29	Cn	copper 64	47	Ag	silver 108	62	Αn	gold 197	111	Rg	roentgenium -					
	Group											28	ï	nickel 59	46	Pd	palladium 106	78	풉	platinum 195	110	Ds	darmstadtium -					
	Gro											27	ဝိ	cobalt 59	45	格	rhodium 103	77	Ι	iridium 192	109	Μ	meitnerium -					
		-	- ;	I	hydrogen 1							26	Ьe	iron 56	44	Ru	ruthenium 101	9/	SO	osmium 190	108	Hs	hassium -					
				707								25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	Bh	bohrium –					
						atomic number							pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg
					Key		atomic symbo	name relative atomic mass				23	>	vanadium 51	41	g	niobium 93	73	ъ	tantalum 181	105	Ор	dubnium –					
										atc	rei-				22	j=	titanium 48	40	Zr	zirconium 91	72	士	hafnium 178	104	꿒	rutherfordium -		
												21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids						
		=										4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	99	Ba	barium 137	88	Ra
		_				က	:=	lithium 7	1	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	55	Cs	caesium 133	87	Ŧ	francium -					

7.1	Γn	Intetium	175	103	۲	lawrencium	I
70	Ϋ́	ytterbium	173	102	%	nobelium	I
69	Tm	thulium	169	101	Md	mendelevium	_
89	щ	erbinm	167	100	Fm	ferminm	I
29	웃	holmium	165	66	Es	einsteinium	-
99	۵	dysprosium	163	86	ర్	califomium	I
65	Tp	terbium	159	26	ă	berkelium	-
64	ВĠ	gadolinium	157	96	Cm	curium	I
63	En	europium	152	98	Am	americium	_
62	Sm	samarium	150	64	Pn	plutonium	I
61	Pm	promethium	ı	63	dN	neptunium	ı
09	PΝ	neodymium	144	92	\supset	uranium	238
69	Ţ	praseodymium	141	91	Ра	protactinium	231
58	Ce	cerium	140	06	T	thorium	232
22	Ľa	lanthanum	139	68	Ac	actinium	I

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).