

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
CHEMISTRY			0620/33
Paper 3 Theory	(Core)	Ма	y/June 2016

Candidates answer on the Question Paper.

Additional Materials: No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

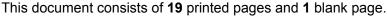
Do not use staples, paper clips, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

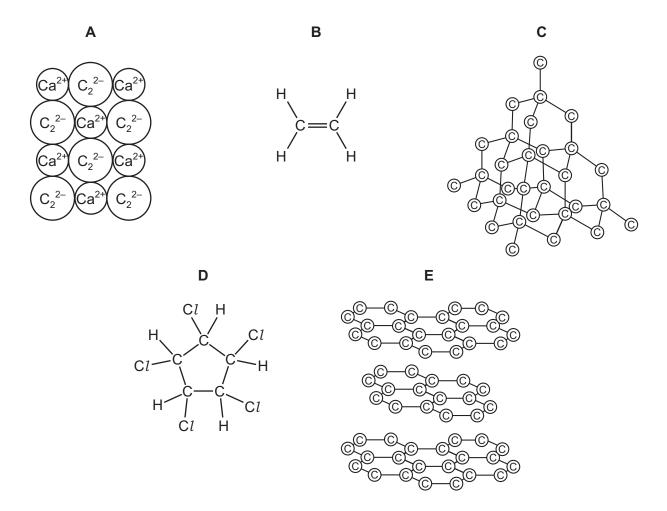
Electronic calculators may be used.

A copy of the Periodic Table is printed on page 20.


You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.


The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

CAMBRIDGE
International Examinations

1 hour 15 minutes

1 The structures of some substances containing carbon are shown.

Answer the following questions about these substances.

(a)	(i)	Which two substances have giant covalent structures?	
		and	[1]
	(ii)	Which substance decolourises aqueous bromine?	
			[1]
	(iii)	Which substance is most likely to be a gas at room temperature and pressure?	
			[1]
	(iv)	Which substance is a hydrocarbon?	
			[1]
	(v)	Determine the simplest formula for substance D .	
			[1 ⁻

(b)	Two is	sotopes of carbon are ${}^{13}_{6}\text{C}$ and ${}^{14}_{6}\text{C}$.	
	(i)	How do these two isotopes differ in their atomic structure?	
			[1]
	(ii)	Determine the number of neutrons present in one atom of the isotope ${}^{14}_{6}{\rm C}.$	
			[1]
		Г	Total: 7

- **2** This question is about metals.
 - (a) The table shows some properties of the metals, \mathbf{R} , \mathbf{S} , \mathbf{T} and \mathbf{U} .

metal	relative electrical conductivity	relative heat conductivity	density in g/cm ³	melting point /°C
R	4.3	11.8	2.7	660
S	1.2	4.2	7.9	1535
Т	6.2	22.3	8.9	1083
U	4.1	12.4	7.1	420

	Which metal would be best to make the base of a pan for cooking food?	
	Use the information in the table to explain your answer.	
		[3]
b)	Zinc chloride can be made by reacting excess zinc with hydrochloric acid.	
	Suggest how the excess zinc can be removed from the reaction mixture.	
		[1]
c)	Zinc can be obtained from molten zinc chloride by electrolysis.	
	(i) What is meant by the term <i>electrolysis</i> ?	
		[2]

	(ii)	Draw a labelled diagram of the apparatus that could be used to electrolyse mozinc chloride.	lten
			[3]
(d)	Give c	one advantage of recycling metals.	
			[1]
		т]	otal: 10]

3 The table gives some information about the halogens.

element	colour	melting point/°C	boiling point/°C
chlorine	light green	-101	-35
bromine	red-brown	-7	+59
iodine	grey-black	+114	+184
astatine		+302	+337

(a)	(i)	Predict the colour of astatine.	
			[1]
	(ii)	Describe the trend in the boiling points of the halogens.	
			[1]
	(iii)	Deduce the state of chlorine at –50 °C.	
		Explain your answer.	
			[2]
(b)	(i)	Complete the word equation for the reaction of bromine with aqueous potassium astati	ide.
bromi	ne ·	+ potassium astatide → +	
			[2]
	(ii)	Suggest why bromine does not react with aqueous potassium chloride.	
			[1]

(c) Compound **X** is used to prepare the dye methyl orange.

The structure of compound **X** is shown.

$$\begin{array}{c|c}
 & H & H \\
O & C = C \\
H - O - S - C & C - N^{+} = NCl^{-} \\
O & C - C & H
\end{array}$$

Complete the table and calculate the relative molecular mass of compound ${\bf X}$.

type of atom	number of atoms	atomic mass	
carbon	6	12	6 × 12 = 72
hydrogen	5	1	5 × 1 = 5
nitrogen	2	14	2 × 14 = 28
sulfur	1	32	1 × 32 = 32
oxygen			
chlorine			

relative molecular mass =	[2	1	

(d)	Describe how you could use methyl orange to distinguish between solutions of hydrochloric and sodium hydroxide.	acid
		[2]

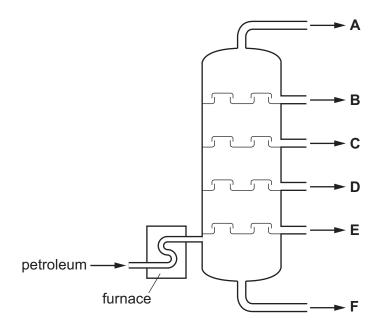
(e)	Methyl orange and Congo red are dyes. A mixture of methyl orange and Congo red can be
	separated by chromatography.

Draw a labelled diagram to show how the apparatus is arranged to carry out chromatography.

[3]

[Total: 14]

BLANK PAGE


TURN OVER TO CONTINUE

- 4 Petroleum is a mixture of hydrocarbons.
 - (a) What is the meaning of the term *hydrocarbon*?

.....[1]

(b) Petroleum can be separated into different fractions by fractional distillation.

The diagram shows a fractionating column. The fractions are shown by letters.

Describe how fractional distillation is used to separate the petroleum into fractions.

In your answer refer to

- · changes of state,
- differences in boiling points.

 	•••••	

[5]

(c) The properties of the fractions are shown in the table.

(d)

fraction	number of carbon atoms	percentage by mass of the fraction	boiling range
Α	1 – 4	3	less than 40
В	4 – 10	14	40 – 160
С	10 – 16	13	160 – 250
D	16 – 20	9	250 – 300
E	20 – 25	9	300 – 350
F	more than 25		more than 350
		total = 100	

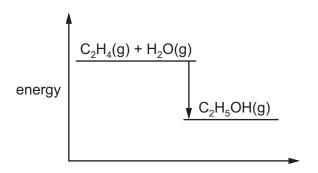
(1)	Describe now the number of carbon atoms affects the boiling range.	
		[1]
(ii)	Determine the percentage by mass of fraction F in this sample of petroleum.	
		[1]
(iii)	Which one of the fractions is mainly gaseous at 25 °C?	
		[1]
(iv)	Fraction F is the residue. It contains bitumen.	
	Give one use of bitumen.	
		[1]
Fracti	on C can be cracked to form alkenes.	
(i)	Describe one condition required for cracking.	
		[1]

(ii) Complete the chemical equation for the cracking of dodecane, $C_{12}H_{26}$, to form heptane, C_7H_{16} , and one other hydrocarbon.

			$C_{12}H_{26} \rightarrow C_7H_{16} + \dots$	
				[1]
			[Total:	: 12]
5	Iron	is a tra	ansition element.	
			ibe the physical and chemical properties of iron.	
	()	2000.		
				[5]
	(b)	Iron c	arbonyl, Fe(CO) ₅ , is a covalent liquid.	[0]
		(i)	Suggest two physical properties of iron carbonyl.	
				[2]
		(ii)	When heated above 200 °C, iron carbonyl undergoes thermal decomposition.	
			$Fe(CO)_5(I) \rightarrow Fe(s) + 5CO(g)$	
			Explain why this reaction could have an adverse effect on health if not carried out fume cupboard.	in a
				[2]

[Total: 9]

6 Ethanol can be manufactured by reacting ethene with steam.

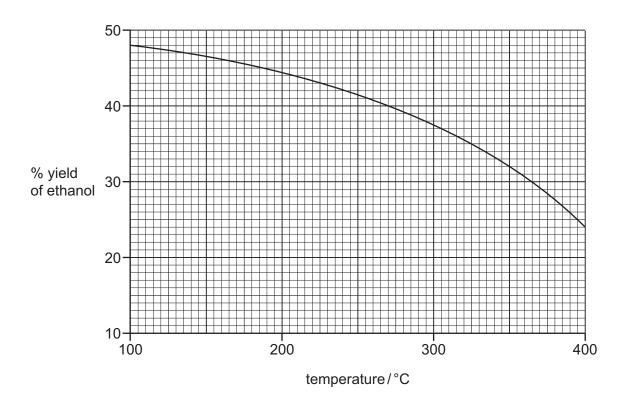

$$C_2H_4(g) + H_2O(g) \rightleftharpoons C_2H_5OH(g)$$

(a) What is the meaning of the symbol \rightleftharpoons ?

[[1]
---	-----

(b) State two conditions needed for this reaction.

(c) The energy level diagram for this reaction is shown.



Is this reaction exothermic or endothermic?

Give a reason for your answer.

[2]

(d) The graph below shows how the percentage yield of ethanol changes with temperature when the pressure is kept constant.

(i)	Describe	how the	percentage	yield	changes	with	temperatur	е
-----	----------	---------	------------	-------	---------	------	------------	---

••
 [1]

(ii) Determine the percentage yield when the temperature is 350 °C.

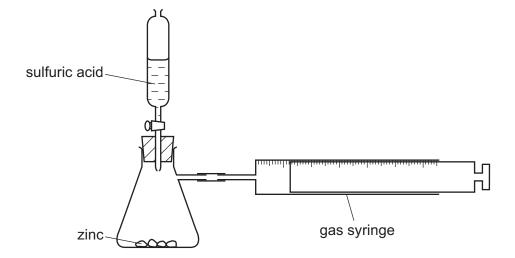
 [1]

(e) (i) Complete the structure of ethanol, C_2H_5OH , to show all atoms and all bonds.

[1]

(ii) Give one use of ethanol.

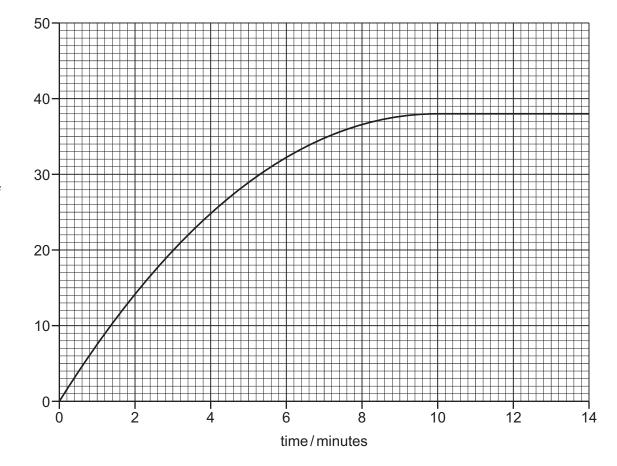
.....[1]


(iii) Complete the chemical equation for the complete combustion of ethanol.

$$C_2H_5OH + 3O_2 \rightarrowCO_2 +H_2O$$

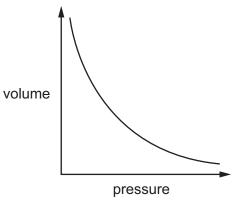
[2]

[Total: 11]


7 A student investigated the reaction between zinc and sulfuric acid at 20 °C using the apparatus shown. The zinc was in excess.

(a) What should the student do to start the reaction?

.....[1]


(b) The graph shows the volume of hydrogen released as the reaction proceeds.

volume of hydrogen / cm³

	(i)	Explain why the volume of gas stays the same after 10 minutes.	[1]
	(ii)	How long did it take for the first 20 cm ³ of gas to be collected?	[1]
			ניו
	(iii)	The student repeated the experiment at 30 °C. All other conditions remained the sa	me.
		Draw the shape of the line on the grid on page 16 when the reaction was carried at 30 $^{\circ}$ C.	out [2]
(c)	The st	udent repeated the experiment using zinc powder instead of small pieces of zinc.	
	Descri	be and explain how the rate of reaction differs when zinc powder is used.	
			[2]
(d)	Sulfuri	c acid is a compound.	
	(i)	What is the meaning of the term <i>compound</i> ?	
			[1]
	(ii)	Sulfur is used to make sulfuric acid.	
		Give one source of sulfur.	
			[1]
	(iii)	Sulfur is oxidised by air to form sulfur dioxide.	
		Give one use of sulfur dioxide.	
			[1]
		[Total:	10]

8 The graph shows how increasing the pressure at constant temperature changes the volume of a fixed mass of carbon dioxide gas.

(a)	Descr	ibe how the volume of gas changes with pressure.	
	•••••		[2]
(b)		happens to the average distance of the molecules from each other when the pressureased?	ıre
			[1]
(c)	Carbo	on dioxide can be reduced by magnesium.	
		$2Mg(s) + CO_2(g) \rightarrow 2MgO(s) + C(s)$	
	(i)	Use the information in the equation to show that carbon dioxide gets reduced.	
			[1]
	(ii)	Which one of these processes does not produce carbon dioxide?	

(ii) Which one of these processes does **not** produce carbon dioxide?

Tick one box.

respiration	
reaction of an acid with a metal oxide	
reaction of an acid with a carbonate	
thermal decomposition of limestone	

(iii)	Give two problems caused by increasing the amount of carbon dioxide in the atmosphere.		
			[2]
	דן	Гotа	l: 7]

The Periodic Table of Elements

								Group	dnı								
	=											=	≥	>	5	=	■
							-										2
							I										He
				Key			hydrogen 1										helium 4
	4		, a	atomic number		J						5	9	7	80	6	10
	Be		ato	atomic symbo	pol							Ω	ပ	z	0	ш	Ne
	beryllium 9		rela	name relative atomic mass	4SS							boron 11	carbon 12	nitrogen 14	oxygen 16	fluorine 19	neon 20
_	12										•	13	14	15	16	17	18
	Mg											ΡΙ	S	۵	S	Cl	Ā
	magnesium 24											aluminium 27	silicon 28	phosphorus 31	sulfur 32	chlorine 35.5	argon 40
_	20	21	22	23	24	25	26		28	29	30	31	32	33	34	35	36
	Ca	Sc	F	>	ဝ်	M	Pe		z	Cn	Zu	Ga	Ge	As	Se	Ā	궃
	calcium 40	scandium 45	titanium 48	vanadium 51	chromium 52	manganese 55	iron 56	cobalt 59	nickel 59	copper 64	zinc 65	gallium 70	germanium 73	arsenic 75	selenium 79	bromine 80	krypton 84
-	38	39	40	41	42	43	4		46	47	48	49	20	51	52	53	54
	ഗ്	>	Zr	g	Mo	ပ	Ru		Pd	Ag	ပ္ပ	I	S	Sb	<u>a</u>	П	Xe
	strontium 88	yttrium 89	zirconium 91	niobium 93	molybdenum 96	technetium -	ruthenium 101		palladium 106	silver 108	cadmium 112	indium 115	th 119	antimony 122	tellurium 128	iodine 127	xenon 131
_	56	57–71	72	73	74	75	92		78	79	80	81	82	83	84	85	98
	Ва	lanthanoids	Ξ	Та	>	Re	SO		₹	Αn	БH	11	Ър	: <u>\overline{\ove</u>	Ъо	At	R
	barium 137		hafnium 178	tantalum 181	tungsten 184	rhenium 186	osmium 190	iridium 192	platinum 195	gold 197	mercury 201	thallium 204	lead 207	bismuth 209	polonium –	astatine -	radon
-	88	89–103	104	105	106	107	108		110	111	112		114		116		
	Ra	actinoids	Ŗ	Ср	Sg	뮵	Hs		Ds	Rg	ပ်		lΉ		_		
	radium		rutherfordium	dubnium	seaborgium	bohrium	hassium	meitnerium	darmstadtium	roentgenium	copernicium		flerovium		livermorium		
ı								┪									

71 .	3	Intetium	175	103	۲	lawrencium	ı
		-			8	_	1
69	E	thulium	169	101	ΡW	mendelevium	1
89	ш Ш	erbium	167	100	Fm	ferminm	ı
29	유	holmium	165	66	Es	einsteinium	1
99	Dy	dysprosium	163	86	ರ	californium	ı
65	Д	terbium	159	97	Ř	berkelium	1
64	eq Cq	gadolinium	157	96	Cm	curium	1
63	П	europium	152	92	Am	americium	1
62	Sm	samarium	150	94	Pu	plutonium	1
61	Pm	promethium	ı	93	ď	neptunium	ı
09	D Z	neodymium	44	92	⊃	uranium	238
59	ŗ	praseodymium	141	91	Ра	protactinium	231
58	Çe	cerium	140	06	Т	thorium	232
57	Га	lanthanum	139	89	Ac	actinium	1

lanthanoids

actinoids

The volume of one mole of any gas is $24\,\mathrm{dm^3}$ at room temperature and pressure (r.t.p.)

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.