

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
CHEMISTRY			0620/23
Paper 2			May/June 2014
			1 hour 15 minutes
Candidates ans	swer on the Question Paper.		
No Additional M	laterials are required.		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

A copy of the Periodic Table is printed on page 20.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

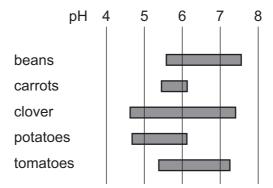
1 (a) Choose from the list of compounds below to answer the following questions.

aluminium oxide
calcium carbonate
calcium oxide
copper(II) sulfate
hydrogen chloride
potassium bromide
sodium chloride
sodium hydroxide

Each compound can be used once, more than once or not at all.

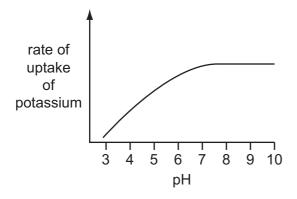
	(i)	reacts w	ith aque	eous am	monia	to form a l	ight blu	e precipi	tate,			
												[1]
((ii)	is forme	d by the	decomp	position	n of limest	one,					
												[1]
(i	iii)					dissolved						[4]
(i	iv)					-brown va						[1]
												[1]
((v)	is an oxi	de of a	metal in	Group	III of the I	Periodic	: Table,				
												[1]
()	vi)	is a tran			-							
/b \	Com											[1]
(D)	Con	npiete th				about com differe		fixe		i the list	below.	
			C	mixed	•	physica						
		ompound obined to				onsists of	•			nents		
		propertion	es of a d	compour	nd are .			from the	se of the	e elemen	ts from w	hich it
	In a	compou	nd, the	elements	s are co	ombined i	າ		prop	ortions.		[3]

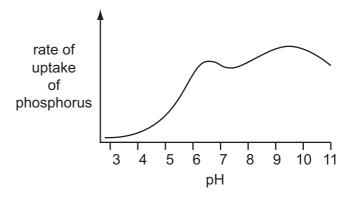
2 (a)	Calcium chloride, $CaCl_2$, is a salt. Suggest the name of an acid and a base that would react together to make calcium chloride.
	acid
	base[2]
(b)	Calcium chloride absorbs water vapour. When calcium chloride is heated, it loses its water of crystallisation. Complete the symbol equation for this reaction. Include the sign for a reversible reaction.
	$CaCl_2.6H_2O$ $CaCl_2$ +
(c)	A student put some clean iron nails in two test-tubes, as shown in the diagram. She then left the test-tubes for several weeks.
	anhydrous calcium chloride CaCl ₂ cotton wool A B Explain why the nails in tube A did not rust but the nails in tube B rusted.
	[2]
(d)	Rust is hydrated iron(III) oxide. What does the (III) in iron(III) oxide refer to? Tick one box.
	the oxidation state of the oxygen
	the oxidation state of the iron
	the number of atoms of oxygen in a formula unit of iron(III) oxide
	the number of water molecules in the hydrated iron oxide [1]


(e) (i) The table describes the ease of reduction of some metal oxides with carbon monoxide.

lead oxide	moderate heating to about 200 °C needed
iron oxide	high temperature furnace at 750 °C needed
magnesium oxide	temperatures above 1000 °C needed
zinc oxide	very high temperature furnace at 900 °C needed

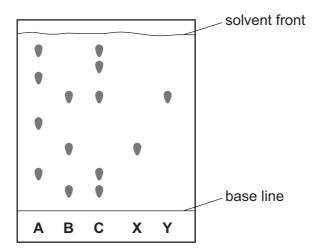
Put these metals in order of their reactivity with carbon monoxide.


least reactive ————————————————————————————————————	→ most reactive
	[2]
	[-]
(ii) Some metal oxides can be reduced by heating with hydrog	en gas.
CuO + $H_2 \rightarrow Cu + H_2O$	
Explain how this equation shows that copper oxide is being	reduced.
	[1]
	[T-1-1, 401
	[Total: 10]


3 The diagram shows the best pH ranges for growing different plants.

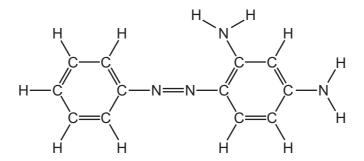
(a)	(i)	Which two plants grow best in acidic conditions only ?	
		and	[1]
	(ii)	Which pH shown in the diagram above represents a neutral pH?	
			[1]
(b)	(i)	Explain why lime is added to acidic soils.	
			[2]
	(ii)	Farmers fertilise soil by adding compounds containing ammonium salts. Explain why adding lime to fertilised soil may cause a loss of nitrogen from the soil.	

(c) The graphs below show the rate of uptake of potassium and phosphate ions by plant roots at different pH values.


	[2]

(ii) At which pH value is the rate of uptake of phosphorus by plant	roots the highest?
---	--------------------

. [1]


[Total: 10]

- 4 Chromatography is used to separate a mixture of coloured dyes.
 - (a) Three different dye mixtures, **A**, **B** and **C**, were spotted onto a piece of chromatography paper. Two pure dyes, **X** and **Y**, were also spotted onto the same piece of paper. The diagram below shows the results of the chromatography.

(1)	State the name of a piece of apparatus that could be used to spot the dyes onto the pap	er.
		[1]
(ii)	Suggest why the base line was drawn in pencil and not in ink.	
		[1]
(iii)	Which dye mixture contains both dye X and dye Y ?	
		[1]
(iv)	Which dye mixture does not contain dye X or dye Y ?	
		[1]
(v)	In which mixture, A , B or C , has the greatest number of dyes been separated?	
		[1]

(b) The structure of the dye chrysoidine G is shown below.

(i)	How many nitrogen atoms are there in a molecule of chrysoidine G?	
		[1]

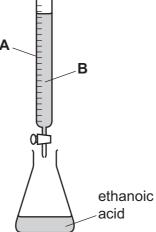
(ii) Complete the table below to calculate the relative molecular mass of chrysoidine G.

type of atom	number of atoms	atomic mass	
carbon	12	12	12 × 12 = 144
hydrogen			
nitrogen			

relative molecular mass =					
			[2]		
(c)	The	e fibres in the chromatography paper are polymers.			
	(i)	What is meant by the term <i>polymer</i> ?			
			[1]		
	(ii)	State the chemical name of the polymer formed from ethene.			
			[1]		

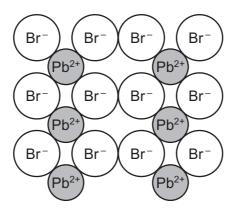
[Total: 10]

5 The table shows some properties of the first four carboxylic acids.

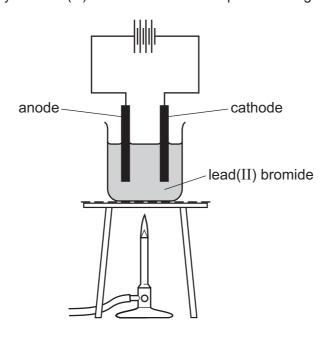

acid	molecular formula	melting point /°C	boiling point /°C	density in g/cm³
methanoic acid	CH ₂ O ₂	+10	+101	1.22
ethanoic acid	C ₂ H ₄ O ₂	+17	+118	1.05
propanoic acid	C ₃ H ₆ O ₂	-21		0.99
butanoic acid	C ₄ H ₈ O ₂	-4	+166	

(a) (i)	How does the boiling point of these carboxylic acids vary with the number of carbon atoms?
	[1]
(ii)	Suggest a value for:
	the boiling point of propanoic acid,°C
	the density of butanoic acid
(iii)	Is butanoic acid a solid, liquid or gas at room temperature? Use the data in the table to explain your answer.
	[1]

(b) Complete the diagram below to show the structure of ethanoic acid. Show all atoms and bonds.


[1]

(c) The concentration of ethanoic acid can be determined by titration using the apparatus shown below.


	ethanoic	
(i)	State the name of the piece of glassware labelled A .	
		[1]
(ii)	Liquid B is an alkali. Which one of the following compounds is also an alkali? Put a ring around the correct answer.	
	calcium carbonate	
	calcium sulfate	
	sodium chloride	
	sodium hydroxide	[1]
(iii)	Describe how you would carry out this titration.	1.1
		[2]
	[Tota	l: 9]

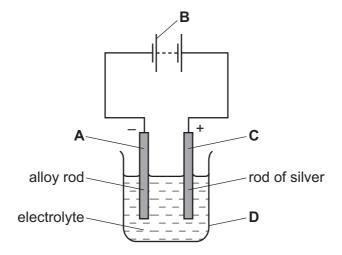
6 Lead(II) bromide is a white solid. Part of the structure of lead(II) bromide is shown below.

(a)	Deduce the simplest formula for lead(11) bromide.	

(b) A student electrolysed lead(II) bromide in a fume cupboard using the apparatus shown below.

((1)) Why is	hea	t need	ed for	this	electrol	vsis?

 [1]


(ii) Suggest the name of a substance that could be used for the electrodes.

(iii) State the name of the products of electrolysis at:

the anode,

(c) Items can be electroplated with silver using the apparatus shown below.

(i)	On the diagram, which letter, A , B , C or D , is the cathode?	
		[1]
(ii)	What would you observe during the experiment at the:	
	positive electrode,	
	negative electrode?	
		[2]

(iii) The electrolyte used is aqueous silver cyanide, AgCN. Calculate the relative formula mass of silver cyanide. You must show all your working.

[2]

[Total: 9]

7 Dmitri Mendeleev published his first Periodic Table in 1869. Part of this table is shown below.

			11 = 50
			V = 51
			Cr = 52
			Mn = 55
			Fe = 56
			Co = 59
H = 1			Cu = 63.4
	Be = 9.4	Mg = 24	Zn = 65.2
	B = 11	Al = 27.4	?
	C = 12	Si = 28	?
	N = 14	P = 31	As = 75
	O = 16	S = 32	Se = 79.4
	F = 19	Cl = 35.5	Br = 80
Li = 7	Na = 23	K = 39	Rb = 85.4

-1 -	1	Na - 23	N - 39	ND - 65.4		
(a)	(i)	What differences are today?	there between I	Mendeleev's table and t	the Periodic Table we us	е
					[4	ŀ]
	(ii)	State the names of any	y two elements ir	n the table above which e	xist as diatomic molecules	š.
				and	[1]
(b)				a metal in Group I of the perties of titanium and so		
	1					
	2					
	3					

[3]

(c)	Titanium(IV) oxide reacts with a mixture of chlorine and carbon.
	The products are titanium(IV) chloride, $TiCl_4$, and a gas which turns limewater milky.
	Complete the symbol equation for this reaction.

TiO ₂	+	Cl_2	+	С	\rightarrow	$TiCl_4$	+	
								[2]

[2]	
Titanium is extracted from titanium (${\rm IV}$) chloride by reduction with molten sodium in the presence of argon.	(d)
Suggest why this reaction is carried out in the presence of argon.	
[2]	
[Total: 12]	

8

	lium sulfate is a solid with a h lium sulfate conducts electrici		hen solid.
(a)	What type of structure is sod Tick one box.	lium sulfate?	
	struc	ture of separated atoms	
	simpl	le molecular structure	
	giant	ionic structure	
	giant	covalent structure	[1]
(b)	Describe a test for sulfate ion	ns.	
	test		
	result		
			[2]
(c)	Describe how simple distillat sulfate. In your answer, refer to: the apparatus used, changes in state, differences in boiling poi		ater from an aqueous solution of sodium
			[e]

(d)	What would you observe when a piece of blue cobalt chloride paper is dipped into water?	
		[1]
(e)	Describe how impure water is treated so that it can be used for drinking.	
		[2]
	[Total:	11]

BLANK PAGE

BLANK PAGE

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

	0	4 1	Helium 2	20	Ne	Neon 10	40	Ā	Argon 18	84	첫	Krypton 36	131	Xe	Xenon 54		Ru	Radon 86				175	Ľ	Lutetium 71		בֿ	Lawrendum 103
	II/			19	ш	Fluorine 9	35.5	CI	Chlorine 17	80			1	н	lodine 53		Αt	Astatine 85						Ytterbium 70		No	Nobelium 102
				16	0	Oxygen 8	32	S	Sulfur 16	62		_			E		Ро	Polonium 84				169	Ε	Thulium 69		Md	Mendelevium 101
	>			14	z	Nitrogen 7			Phosphorus 15						_		Ö	Bismuth 83					ш			Fm	Fermium 100
	2			12	ပ				Silicon 14		Ge	Ε		Sn		207	Pb	Lead 82				165	우	Holmium 67		Es	Einsteinium 99
	=			1	Ω	Boron 5	27	V 1	Aluminium 13	20	Ga	Gallium 31	115	'n	Indium 49	204	11	Thallium 81				162	۵	Dysprosium 66		ర	Californium 98
										65	Zn	Zinc 30	112	Sq	Cadmium 48	201	Hg	Mercury 80				159	Тb	Terbium 65		æ	Berkelium 97
										64	ဥ	Copper 29	108	Ag	Silver 47	197	Αn	Gold 79				157		Gadolinium 64			Curium 96
Group															E		ቷ	Platinum 78				152	Ē	Europium 63		Am	Americium 95
Ď				1						59	ပိ	Cobalt 27	103		_	192	i	Iridium 77				150	Sm	Samarium 62		Pu	Plutonium 94
		- 1	Hydrogen 1							56	Fe	Iron 26		Ru	Ruthenium 44		os	Osmium 76					Pm	Promethium 61		N D	Neptunium 93
											Mn	2 10		ည	n Technetium 43	186	Re	Rhenium 75					P	Neodymium 60	238	_	Uranium 92
										52	ပ်	Chromium 2	96	Mo	Molybdenum 42	184	>	Tungsten 74				141	Ą	Praseodymium 59		Ра	Protactinium 91
										51	>	Vanadium 23	93	Q N	Niobium 41	181	Та	Tantalum 73				140	Ce	Cerium 58	232	т	Thorium 90
										48	F	Titanium 22	91	Zr	Zirconium 40	178	¥	* Hafnium				1			nic mass	loq	nic) number
										45	လွ	Scandium 21	88	>	Yttrium 39	139	Гa	Lanthanum 57 *	227	Ac	Actinium 89	00100	u serios	60.00	a = relative atomic mass	X = atomic symbol	b = proton (atomic) number
	=			o	Be	Beryllium 4	24	Mg	Magnesium 12	40	Sa	Calcium 20	88	ഗ്	Strontium 38	137	Ba	Barium 56	226	Ra	Radium 88	*58 71 Lonthonoid corios	30-7 1 Lantinariold series		а	×	Ф
	_			7	=	3 Lithium	23	Na	Sodium 11	39	×	Potassium 19	85	Rb	Rubidium 37	133	Cs	Caesium 55		ъ	Francium 87	*58 711	100-103			Key	q

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.