

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 0620/32

Paper 3 Theory (Core)

February/March 2024

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

1 A list of substances is shown.

brass
calcium oxide
carbon monoxide
diamond
glucose
hydrogen
litmus
magnesium bromide
methyl orange
sodium chloride
stainless steel
thymolphthalein
water
zinc oxide

Answer the following questions about these substances. Each substance may be used once, more than once or not at all.

State which substance:

(a)	is formed by the thermal decomposition of calcium carbonate in the blast furnace	
		[1]
(b)	is a mixture of copper and zinc	
		[1]
(c)	turns yellow when an alkali is added	
		[1]
(d)	is a reactant in photosynthesis	
		[1]
(e)	is a salt that contains a positive ion with a charge of 1+	
		[1]
(f)	is a compound that reduces iron(III) oxide in the blast furnace.	
		[1]

[Total: 6]

2 Table 2.1 shows the masses of some of the ions in a 1000 cm³ sample of river water.

Table 2.1

name of ion	formula of ion	mass of ion in 1000 cm ³ of river water/mg
	NH ₄ ⁺	0.4
calcium	Ca ²⁺	1.4
chloride	C1-	0.1
hydrogencarbonate	HCO ₃ -	1.2
magnesium	Mg ²⁺	0.6
nitrate	NO ₃ ⁻	0.8
phosphate	PO ₄ ³⁻	1.3
sodium	Na⁺	0.5
	SO ₄ ²⁻	0.4

			SO ₄ ²⁻	0.4		
(a)	Answ	er these questions using	the information in T	able 2.1.		
	(i) N	ame the negative ion the	at has the highest co	ncentration.		
						[1]
	(ii) N	ame the compound that	·			- 4 -
	 (iii) C	alculate the mass of hvo		s in 200 cm³ of river water.		[1]
`	(,	arounate and made of my				
				mass =	mg	[1]
(b)	Give a	a test for sodium ions.				
	test					
	obser	vations				 [2]
(c)		of the nitrate ions in rive		rtilisers used on fields.		
	Descr	ibe the benefit of using f	ertilisers.			
						[1]

	4	
(d)	Water from natural sources can be polluted with harmful substances.	
	State why sewage and phosphates in river water are harmful.	
	sewage	
	phosphates	
		[2]
(e)	River water can contain acids such as ethanoic acid and methylbutanoic acid.	
	(i) Draw the displayed formula for ethanoic acid.	
		[1]
	(ii) Ethanoic acid reacts with sodium hydroxide.	
	Complete the word equation for this reaction.	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		[2]

(iii) Methylbutanoic acid has the molecular formula $\mathrm{C_5H_{10}O_2}.$

Complete Table 2.2 to calculate the relative molecular mass of $C_5H_{10}O_2$.

Table 2.2

atom	number of atoms	relative atomic mass	
carbon	5	12	5 × 12 = 60
hydrogen		1	
oxygen		16	

relative molecular mass = [2]

[Total: 13]

3 The chemical elements are arranged in the Periodic Table in groups and periods.

(a)	(i)	Describe how the metallic character of the elements changes from left to right acros period.	s a				
			[1]				
	(ii)	The elements in Group I are known as the alkali metals.					
		Describe two trends in the properties of the elements, going down Group I.					
		1					
		2					
			[2]				

- **(b)** Chlorine, bromine and iodine are in Group VII of the Periodic Table.
 - (i) Aqueous chlorine reacts with aqueous sodium bromide to produce aqueous bromine and aqueous sodium chloride.

Complete the symbol equation for this reaction.

$$Cl_2$$
 +NaBr \rightarrow + 2NaC l [2]

(ii) Suggest why aqueous iodine does **not** react with aqueous sodium bromide.

(iii) Complete the dot-and-cross diagram in Fig. 3.1 for a molecule of iodine.

Show outer shell electrons only.

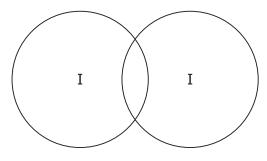


Fig. 3.1

[2]

(c) Molten silver bromide is electrolysed using graphite electrodes.

Name the product formed at each electrode.

product at the anode

product at the cathode[2]

(d) Fig. 3.2 shows the apparatus used to electroplate a metal object with silver.

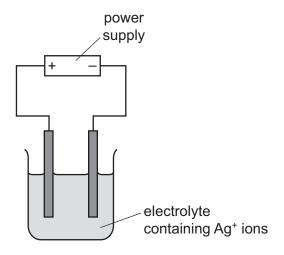


Fig. 3.2

(i) Label Fig. 3.2 to show where the silver is deposited. [1]

(ii) State why objects are electroplated.

.....[1]

[Total: 12]

a) (i)	Write the general formula f	for alkenes				
					 	[1]
(ii)	Explain the need for cracki	ing larger a	lkane molecules	S.		
					 	[1]
(iii)	Describe two conditions no	eeded for c	racking.			
	1				 	
	2				 	
						[2]
h) All	kenes are unsaturated comp	ounde				
D) Air	delies are unsaturated comp	ourius.				
Sta	ate the meaning of the term (unsaturated	d.			
Sta	ate the meaning of the term (d. 		 	
Sta	ate the meaning of the term o					
Sta	ate the meaning of the term of					
	ote the meaning of the term of					
		ints of some				
		ints of some	e alkenes.			
		ints of some	e alkenes. l e 4.1 boiling point			
	ble 4.1 shows the boiling poi	ints of some Tab alkene	e alkenes. le 4.1 boiling point /°C			
	ble 4.1 shows the boiling poi	ints of some Tab	e alkenes. le 4.1 boiling point /°C			
	ble 4.1 shows the boiling poi	ints of some Tab alkene ethene propene	e alkenes. le 4.1 boiling point /°C -104			
	ble 4.1 shows the boiling poi	ints of some Tab alkene ethene propene butene	e alkenes. le 4.1 boiling point /°C -104			
	ble 4.1 shows the boiling poi	alkene ethene propene butene pentene hexene	boiling point /°C -104 -6 30			

(ii)	The melting point of butene is –185 °C.
(,	Deduce the physical state of butene at –100°C.
	Give a reason for your answer.
	physical state
	reason
	[2]
(d) Fig	g. 4.1 shows a gas syringe that contains 60 cm³ of ethene gas.
	end of gas
	syringe blocked ethene gas
01	Fig. 4.1
	ate how the volume of ethene in the gas syringe changes when the temperature is decreased d the pressure remains the same.
	[1]
(e) Po	ly(ethene) is produced by the polymerisation of ethene. The reaction is exothermic.
(i)	State the meaning of the term exothermic.
	[1]
(ii)	Fig. 4.2 shows the reaction pathway diagram for this reaction.
	↑
	ethene
	energy poly(ethene)
	<u> </u>
	progress of reaction
	Fig. 4.2
	Explain how this reaction pathway diagram shows that the reaction is exothermic.
	, , , , , , , , , , , , , , , , , , , ,

(f)	Ethene	reacts	with	steam	to	produce	ethanol.
-----	--------	--------	------	-------	----	---------	----------

(i) Complete the symbol equation for this reaction.

$$C_2H_4$$
 + \rightarrow [2]

(ii) Choose the word which describes the type of catalyst used in this reaction.

Draw a circle around your chosen answer.

acid alkali metal salt [1]

[Total: 14]

Question 5 starts on the next page.

_	_			
5	Sama	riiim	10 0	metal
J	Jaille	muni	io a	III GLAI

(a)	Deduce the	number of	electrons	and ne	eutrons in	n the	samarium	atom	shown.
-----	------------	-----------	-----------	--------	------------	-------	----------	------	--------

	¹⁵⁴ ₆₂ Sm	
	number of electrons	
	number of neutrons	
		[2]
(b)	Samarium has properties that are similar to the properties of transition elements.	
	Choose one statement about samarium that is correct.	
	Tick (✓) one box.	
	Compounds of samarium are colourless.	
	Samarium has a low melting point.	
	Samarium and its compounds do not act as catalysts.	

(c) Large pieces of samarium react with cold water to produce hydrogen gas.

Samarium has a high density.

$$2Sm + 6H2O \rightarrow 2Sm(OH)3 + 3H2$$

(i) Complete Fig. 5.1 by drawing the apparatus to show how the volume of hydrogen gas is measured during this reaction.

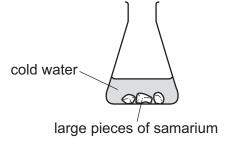


Fig. 5.1

[2]

[1]

	(ii)	The experiment is r	epeated using	hot water instead of c	old water.	
		All other conditions	stay the same			
		Describe how the ra	ate of reaction	changes when hot wa	iter is used.	
						[1]
	(iii)	The experiment is re	eneated using r		stead of large pieces of sama	
,	(''')	·			Stead of large proces of sama	iuiii.
		All other conditions	•			
		Describe how the ra	ate of reaction	changes when powde	ered samarium is used.	
						[1]
(d)	Tab	le 5.1 shows the obs	ervations wher	samarium and three o	other metals are heated in oxy	/gen.
			7	able 5.1		
			metal	observations]	
			nickel	reacts very slowly	-	
			samarium	reacts rapidly	-	
			strontium	reacts very rapidly		
			yttrium	does not react		
		the four metals in o		activity.		
	lea	st reactive ———			— → most reactive	
						l
						[2]
, ,	0					
(e)				ice samarium oxide, S	im ₂ O ₃ .	
	Cor	mplete the symbol e	quation for this	reaction.		
			Sm +	$3O_2 \rightarrowSm_2O_3$		[2]
(f)	Hyc	drated samarium chl	oride is an ionid	c compound.		
	(i)	Define the term hyd	drated.			
						[1]

(ii)	State two physical properties of an ionic compound.
	1
	2
	[2]

[Total: 14]

Question 6 starts on the next page.

Sul	fur is	an el	ement in Gro	up VI c	of the Periodic	Table.				
(a)	Stat	e the	meaning of th	ne term	n element.					
										[1]
(b)	Sulfi	ur has	s a relative at	omic m	nass of 32.					
(-)			these senter			ve atomic ma	ss of s	ulfur usina t	erms from t	he list.
		¹² C	electrons	¹H	isotopes	neutrons	¹⁶ O	protons	³² S	
	The	relati	ve atomic ma	iss of s	ulfur is the a	/erage mass	of the s	ulfur		
	This	aver	age mass is o	compar	red to 1/12 th c	of the mass of	an ato	m of		
										[2]
(c)	Sulf	ur is a	a solid at roon	n temp	erature and p	oressure.				
	Des	cribe	the motion ar	nd sepa	aration of the	particles in s	olid sulf	fur.		
	moti	on								
	sepa	aratio	n							
										[2]
										[4]
(d)	Liqu	id sul	fur reacts wit	h chlor	ine to produc	e disulfur dich	nloride.			
					2S + Cl ₂	$\rightarrow S_2Cl_2$				
			ribe how the t	_	ıl physical pro	perties of a li	quid dit	ffer from tho	se of a solid	d.
		1								
		2								[2]
										[4]

(ii) When $6.4\,g$ of sulfur reacts with excess chlorine, $13.5\,g$ of disulfur dichloride is produced.

		Calculate the mass of disulfur dichloride produced when 19.2 g of sulfur reacts with excess chlorine.
		mass = g [1]
(e)	Sul	fur dioxide is formed when sulfur burns in air.
	(i)	State the percentage of oxygen in clean, dry air.
		[1]
	(ii)	State one source of the pollutant sulfur dioxide in the air other than from burning sulfur.
		[1]
	(iii)	State one adverse effect of sulfur dioxide in the air.
	(iv)	State one method of reducing the emissions of sulfur dioxide.
	()	[1]
	(v)	Sulfur dioxide dissolves in water to form sulfurous acid.
		Give the formula of the ion that is present in all aqueous acids.
		[1]
	(vi)	Sulfur dioxide reacts with oxygen in the presence of a catalyst to form sulfur trioxide. This is a reversible reaction.
		Complete the equation for this reaction by writing the sign for a reversible reaction in the box.
		$2SO_2 + O_2 $
		[Total: 14]

Ma	gnesium is an elem	nent in Group II of the	Periodic Table.		
(a)	Deduce the electron	onic configuration of m	nagnesium.		
					[1]
(b)	Magnesium can b	e produced by reducir		e with barium.	
		MgO + Ba	→ Mg + BaO		
	Explain how this e	equation shows that m	agnesium oxide is r	educed.	
					[1]
(c)	Alloys of magnesi	um and aluminium are	e resistant to corros	ion.	
	Choose the diagra	am, A , B , C or D , in Fi	g. 7.1 that best sho	ws the structure of ar	ı alloy.
	A	В	С	D	·
	000		0000		
	0000		ia 7.4		
	P.		ig. 7.1		F41
	diagram				[1]
(d)	(i) Complete the	word equation for the	reaction of magnes	sium oxide with hydro	chloric acid.
[
	magnesium oxide	+ hydrochloric acid	→	+	
	27.1.2.0				
					[2]
	(ii) Magnesium o	oxide is insoluble in wa	ter.		
	Choose from	the list one other com	pound that is insolu	uble in water.	
	Tick (✓) one b	box.			
		magnesium o	carbonate		
		magnesium o	chloride		
		magnesium ı	nitrate		
		magnesium s	sulfate		
		-			[1]

(e) Fig. 7.2 shows the electronic configuration of an element in Group II of the Periodic Table.

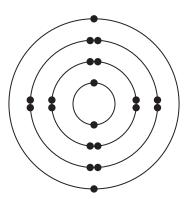


Fig. 7.2

Deduce the period in the Periodic Table to which this element belongs.

Period[1]

[Total: 7]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

	- 1			Grc	Group								
								=	2	>		II/	■
			- I										2 He
			hydrogen 1										helium 4
atomic number		ı						2	9	7	∞	6	10
atomic symbol								В	O	Z	0	ш	Se
name relative atomic mass								boron 11	carbon 12	nitrogen 14	oxygen 16	fluorine 19	neon 20
								13	14	15	16	17	18
								Ν	S	₾	ഗ	Cl	Ar
								aluminium 27	silicon 28	phosphorus 31	sulfur 32	chlorine 35.5	argon 40
	25		26	27	28	29	30	31	32	33	34	35	36
Cr	Σ		Ьe	ပိ	Z	Cn	Zu	Ga	Ge	As	Se	Ŗ	굿
vanadium chromium manganese 51 55	mangane 55	es es	iron 56	cobalt 59	nickel 59	copper 64	zinc 65	gallium 70	germanium 73	arsenic 75	selenium 79	bromine 80	krypton 84
42	43		44	45	46	47	48	49	20	51	52	53	54
Mo	\vdash		Ru	몬	Pd	Ag	В	In	Sn	Sb	<u>n</u>	Н	Xe
niobium molybdenum technel	technel -	inm	ruthenium 101	rhodium 103	palladium 106	silver 108	cadmium 112	indium 115	tin 119	antimony 122	tellurium 128	iodine 127	xenon 131
74	7.6	10	92	77	78	79	80	81	82	83	84	85	98
>	2	Φ	SO	Ľ	풉	Αn	ЭĤ	11	Pb	<u>.</u>	Po	¥	Ru
tungsten rhenium 184 186	rheniu 186	Ē	osmium 190	iridium 192	platinum 195	gold 197	mercury 201	thallium 204	lead 207	bismuth 209	polonium –	astatine -	radon
	107		108	109	110	111	112	113	114	115	116	117	118
Sg	亩	_	Hs	¥	Ds	Rg	ű	R	Εl	Mc	_	<u>s</u>	Og
dubnium seaborgium bohriur	bohriur		hassium	meitnerium -	darmstadtium -	roentgenium -	copernicium	nihonium	flerovium	moscovium -	livermorium -	tennessine -	oganesson -

r ₁	lutetium 175	103	۲	lawrendum -
²⁰ Y	ytterbium 173	102	8	nobelium –
e9 Tm	thulium 169	101	Md	mendelevium -
88 <u>n</u>	erbium 167	100	Fm	fermium –
67 Ho	holmium 165	66	Es	einsteinium –
® Dy	dysprosium 163	86	ర	californium -
es Tb	terbium 159	26	益	berkelium -
² D	gadolinium 157	96	CB	curium
63 Eu	europium 152	92	Am	americium _
62 Sm	samarium 150	94	Pu	plutonium
61 Pm	promethium —	93	δ	neptunium -
9 P X	neodymium 144	92	\supset	uranium 238
59 Pr	praseodymium 141	91	Ра	protactinium 231
Ce Ce	cerium 140	06	드	thorium 232
57 La	lanthanum 139	88	Ac	actinium I

lanthanoids

actinoids

The volume of one mole of any gas is $24\,\mathrm{dm^3}$ at room temperature and pressure (r.t.p.).