

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

CANDIDATE	
NAME	
CENTRE NUMBER CANDIDATE NUMBER	
CHEMISTRY	0620/32
Paper 3 Theory (Core) February	/March 2019
1 hou	15 minutes
Candidates answer on the Question Paper.	

READ THESE INSTRUCTIONS FIRST

No Additional Materials are required.

Write your centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

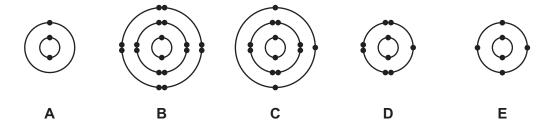
Answer all questions.

Electronic calculators may be used.

A copy of the Periodic Table is printed on page 16.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.


The number of marks is given in brackets [] at the end of each question or part question.

This syllabus is regulated for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

This document consists of 16 printed pages.

- 1 This question is about electronic structures.
 - (a) The electronic structures of five atoms, A, B, C, D and E, are shown.

Answer the following questions about these electronic structures. Each electronic structure may be used once, more than once or not at all.

State which electronic structure, A, B, C, D or E, represents an atom:

- (i) of an element in Group III of the Periodic Table
 [1]

 (ii) of a monatomic gas
 [1]

 (iii) of carbon
 [1]

 (iv) which has 18 protons
 [1]

 (v) which forms a stable ion with a single negative charge
 [1]
- **(b)** Draw the electronic structure of a silicon atom.

[2]

[Total: 7]

2	This	question	is	about	uranium	and	its	compounds.	
---	------	----------	----	-------	---------	-----	-----	------------	--

(a) (i) An isotope of uranium is represented by the symbol s
--

²³⁵U

				920			
		Deduce the nun	nber of electrons a	and neutrons in c	one atom of this	s isotope of ura	nium.
		number of elect	rons				
		number of neutr	rons				[2]
	(ii)	State the main u	use of this isotope	of uranium.			
							[1]
(b)	Cor	mplete the senter	nce about isotope	s using words fro	m the list.		
		atoms	compound	electrons	element	ions	
		mixture	e molecules	s neutrons	substar	ıce	
	Isot	opes are	of	the same		which have t	the same
	prot	ton number but a	a different number	of			[3]
(c)	Ura	nium is a metal.					
	Giv	e two physical p	roperties which ar	e characteristic o	of all metals.		
	1						
	2						[2]

(d) Uranium reacts with hydrogen to form uranium hydride, UH_3 . The reaction is reversible.

Complete the chemical equation for this reaction by:

- balancing the equation
- drawing the symbol for a reversible reaction in the box.

[3]

(e) A compound of uranium has the formula $\mathrm{UO_2F_2}$.

Complete the table to calculate the relative formula mass of $\rm UO_2F_2$. Use your Periodic Table to help you.

	number of atoms	relative atomic mass	
uranium	1	238	1 × 238 = 238
oxygen			
fluorine			

relative	tormula	mass =	:	
				[2]

[Total: 13]

- 3 This question is about sulfur, sulfur compounds and the water from a sulfur spring. A sulfur spring is a natural source of water containing sulfur.
 - (a) The table shows the mass of ions present in a 1000 cm³ sample of water from a sulfur spring.

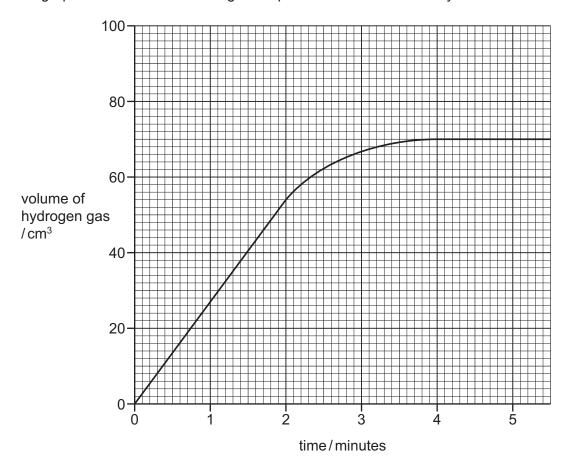
ion present	formula of ion	mass present in the 1000 cm ³ sample/mg
	Br-	4
calcium	Ca ²⁺	44
chloride	C1-	14
fluoride	F-	6
iron(III)	Fe³+	2
magnesium	Mg ²⁺	10
	K ⁺	8
sodium	Na⁺	88
sulfate	SO ₄ ²⁻	92

Answer these questions using only information from the table.

	(i)	Which negative ion is present in the lowest concentration?	
			[1]
	(ii)	Give the name of the compound formed from only K ⁺ and Br ⁻ ions.	
			[1]
((iii)	Calculate the mass of calcium ions present in a 250 cm ³ sample of this water.	
		mass of calcium ions = mg	[1]
(iv)	Complete the equation to show the formation of a fluoride ion from a fluorine atom.	
		F + → F ⁻	F41
			[1]
(b)	Des	scribe a test for sulfate ions.	
	test		
	obs	ervations	

[2]

(i)			the edge of sulfur sp					
	When heated, sulfur undergoes sublimation.							
	What is m	eant by the te	erm sublimation?					
					[1]			
(ii)	Sulfur read	cts with hot co	oncentrated sulfuric					
	Complete	the chemical	equation for this rea	ction.				
		S +	$H_2SO_4 \rightarrow 2H_2O_4$	O + SO ₂	[2]			
(iii)		shows the so lvent boils at		zinc in an organic so	olvent and in water. The			
		element	solubility in organic solvent	solubility in water				
		sulfur	soluble	insoluble				
		zinc	insoluble	insoluble				
					[4]			
d) Th	o otructuro o	of a gulfur oor			[4]			
d) Th	e structure c	of a sulfur cor	npound is shown.		[4]			
d) Th	e structure c	of a sulfur cor			[4]			
De		olecular form	npound is shown. F S F F F F	·F	er of sulfur, fluorine and			
De	educe the m	olecular form	npound is shown. F S F F ula of this compoun	·F	er of sulfur, fluorine and			


4 A student investigated the reaction between zinc and dilute hydrochloric acid by measuring the volume of hydrogen gas produced at one minute intervals.

$$Zn + 2HCl \rightarrow ZnCl_2 + H_2$$

(a) Give the name of the salt formed in this reaction.

.....[1]

(b) The graph shows the results using small pieces of zinc and dilute hydrochloric acid.

(i) Deduce the volume of hydrogen gas produced in the first **two** minutes of the reaction.

..... cm³ [1]

(ii) Draw a letter **S** on the graph to show where the reaction is slowing down but has not stopped completely. [1]

(iii) Draw a line **on the grid** to show how the volume of hydrogen gas changes with time when the reaction is repeated with a catalyst.

All other conditions are kept the same. [2]

(iv)	What effect do the following have on the rate of this reaction?	
		 Decreasing the temperature at which the reaction is done. All other conditions are kept the same. 	
		Using zinc powder instead of small pieces of zinc. All other conditions are kept the same.	
			 [2
(c)	Des	scribe a test for hydrogen.	
	test	t	
	resi	ult	
			[2
(d)		e table gives some information about the rate of reaction of zinc and some other metals very water and with steam.	vith

metal	rate of reaction				
IIIelai	with cold water	with steam			
iron	no reaction	hot iron reacts very slowly			
magnesium	reacts very slowly	hot magnesium reacts rapidly			
mercury	no reaction	no reaction			
strontium	reacts rapidly	reacts rapidly			
zinc	no reaction	hot zinc reacts slowly			

Put the **five** metals in order of their reactivity. Put the most reactive metal at the top.

most reactive	
1	
least reactive	

Calculate the maximum mass of zinc sulfide formed when 3.25 g of zinc reacts completely with sulfur.

mass of zinc sulfide formed = g [1]

[Total: 12]

Aqueous sodium hydroxide is a base.

5

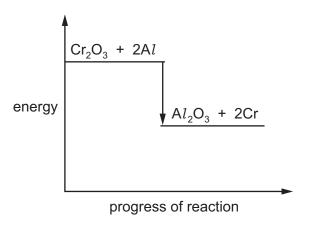
(a)	Describe the	e reaction of a	aqueous sodium	hydroxide with:							
	• a name	d acid									
	• ammoni	ium salts									
	a named	d indicator.									
						[5]					
(b)	Ammonia is	a soluble bas	se.								
	Which one of Draw a circle	of the followin e around the	g pH values cou correct answer.	ld be the pH of	aqueous ammonia?						
		pH 1	pH 5	pH 7	pH 10	[1]					
(c)	Ammonia is	used in the n	nanufacture of so	ome fertilisers.							
	Which two of these compounds are present in fertilisers? Tick two boxes.										
			copper(II) o	xide							
			potassium c	hloride							
			sodium phos	sphate							
			strontium flu	oride							
			sulfur dioxid	e							
						[2]					

(d)		cteria in the soil are able to convert ammonium compounds into oxides of nitrogen. e oxides of nitrogen can escape into the atmosphere.
	(i)	State one other source of oxides of nitrogen in the atmosphere.
		[1]
	(ii)	State one effect of oxides of nitrogen on health.
		[1]
((iii)	Oxides of nitrogen are greenhouse gases which contribute to climate change.
		Give the name of one other greenhouse gas which makes a major contribution to climate change.
		[1]
		[Total: 11]

6 This question is about chromium and chromium co	ompounds
---	----------

(a)	(i)	Suggest why chromium is manufactured by electrolysis and ${\bf not}$ by the reduction chromium(VI) oxide, ${\rm CrO_3}$, with carbon.	of							
			[1]							
(ii)	Suggest the products of electrolysis of molten chromium(VI) oxide at:									
		the positive electrode								
		the negative electrode.								

(b) Chromium can also be manufactured by the reduction of chromium(III) oxide, Cr_2O_3 , with aluminium.


$$\mathrm{Cr_2O_3}$$
 + $\mathrm{2A}l \rightarrow \mathrm{A}l_2\mathrm{O_3}$ + $\mathrm{2Cr}$

(i) How does this equation show that chromium(III) oxide is reduced?

		[1]

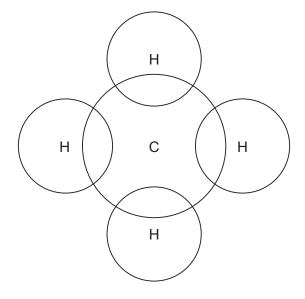
[2]

(ii) The energy level diagram for this reaction is shown.

Explain how this diagram shows that the reaction is exothermic.	

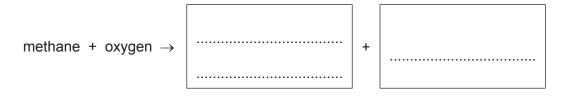
......[1]

(c)	Chromium is a transition element. Sodium is an element in Group I of the Periodic Table.	
	Describe two ways in which the properties of chromium are different from those of sodium	
	1	
	2	[2]
(d)	Chromium is a silver-coloured metal.	
	The diagram shows how a copper spoon can be electroplated with chromium.	
	power supply	
	(i) On the diagram, label:	
	the cathodethe electrolyte.	[2]
	(ii) Give one observation that is made during the electroplating process.	
		[1]
(iii) Suggest one reason why metal objects are electroplated.	
		[1]
(e)	Nichrome is an alloy of nickel, iron and chromium. Which one of these diagrams, J , K , L or M , best represents nichrome?	
	J K L M	
		[1]


- 7 This question is about alkanes and petroleum fractions.
 - (a) The table gives some information about alkanes.

alkane	number of carbon atoms in each molecule	melting point in °C	boiling point in °C			
methane	1	-182	-164			
ethane	2	-183	-88			
propane	3	– 190	-42			
butane	4	-135	0			

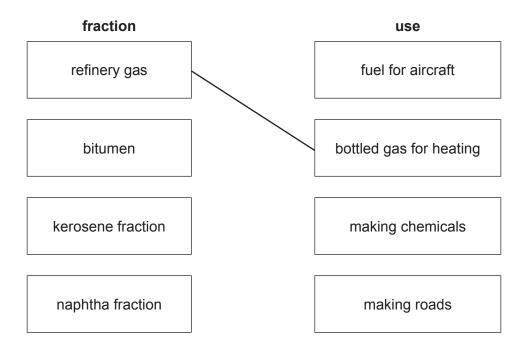
Answer these questions using only information from the table.


(i)	Describe how the boiling points of the alkanes vary with the number of carbon atoms each molecule.	in
		[1]
(ii)	Which alkane has the lowest melting point?	
		[1]
iii)	Deduce the physical state of butane at –50 °C. Explain your answer.	
		[1]

(b) (i) Complete the dot-and-cross diagram to show the electron arrangement in a molecule of methane. Show outer shell electrons only.

[1]

(ii) Complete the word equation for the complete combustion of methane.



(c) Complete the sentences about homologous series using words from the list.

	acidic alkenes		alcohol	carbohydrates	/drates			
	chemical	functional	hydrocarbons	physical				
Metha	ne and ethane are	·	which belong to	the same homologo	ous series.			
Members of the alkane homologous series have similar properties due								
to the	presence of the sa	ame	group.		[3]			

(d) Petroleum is separated into useful fractions by fractional distillation.

Match the fractions on the left with the uses on the right. The first one has been done for you.

[Total: 11]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

© UCLES 2019 0620/32/F/M/19

[2]

[2]

The Periodic Table of Elements

	 	² He	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	52	Xe	xenon 131	98	R	radon			
	=			6	ш	fluorine 19	17	Cl	chlorine 35.5	35	ä	bromine 80	53	н	iodine 127	85	Ąŧ	astatine			
	5			80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>e</u>	tellurium 128	84	Ъ	molod –	116		livemorium -
	>			7	z	nitrogen 14	15	۵	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	Ξ	bismuth 209			
	≥			9	ပ	carbon 12	14	ij	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pp	lead 207	114	F1	flerovium
	≡			2	В	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204			
										30	Zu	zinc 65	48	B	cadmium 112	80	Нg	mercury 201	112	S	copernicium -
										59	D C	copper 64	47	Ag	silver 108	79	Αn	gold 197	111	Rg	roentgenium -
Group										28	Z	nickel 59	46	Pd	palladium 106	78	£	platinum 195	110	Ds	darmstadtium -
Gr										27	ပိ	cobalt 59	45	牊	rhodium 103	77	'n	iridium 192	109	¥	meitnerium -
		- I	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	92	Os	osmium 190	108	Η	hassium
										25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium
					pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≯	tungsten 184	106	Sg	seaborgium -
			Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	g	niobium 93	73	д	tantalum 181	105	Вb	dubnium —
					ato	rek				22	i=	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	꿆	rutherfordium —
										21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids	
	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Š	strontium 88	26	Ba	barium 137	88	Ra	radium
	_			က	:=	lithium 7	7	Na	sodium 23	19	¥	potassium 39	37	&	rubidium 85	55	S	caesium 133	87	ъ́	francium

7.1	Ρſ	lutetium 175	103	ב	lawrencium	I
		ytterbium 173			_	ı
69	T	thulium 169	101	Md	mendelevium	I
89	ш	erbium 167	100	Fm	fermium	ı
29	웃	holmium 165	66	Es	einsteinium	ı
99	۵	dysprosium 163	86	ర్	californium	I
65	Д	terbium 159	26	Ř	berkelium	ı
64	gg	gadolinium 157	96	Cm	curium	I
63	En	europium 152	92	Am	americium	ı
62	Sm	samarium 150	94	Pn	plutonium	ı
61	Pm	promethium -	93	ď	neptunium	ı
09	PN	neodymium 144	92	\supset	uranium	238
69	Ā	praseodymium 141	91	Ра	protactinium	231
58	Ce	cerium 140	06	T	thorium	232
22	Гa	lanthanum 139	68	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).