

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
CHEMISTRY			0620/32
Paper 3 Theory (Core)		Feb	oruary/March 2018
			1 hour 15 minutes
Candidates and	swer on the Question Paper.		
No Additional N	Materials are required.		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

A copy of the Periodic Table is printed on page 16.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

1 (a) The structures of five substances, A, B, C, D and E, are shown.

Na ⁺ Br ⁻ Na ⁺ Na ⁺	H H H—C—C—H Br Br	o=c=o	Ci Ci	0=0
Α	В	С	D	E

Answer the following questions using only the substances in the diagram. Each substance may be used once, more than once or not at all.

State which substance, A, B, C, D or E:

(i)	is a diatomic molecule	[1]
(ii)	contains bromide ions	[1]
(iii)	is an element	[1]
(iv)	is a gas which is a product of respiration	[1]
(v)	gives a yellow colour in a flame test.	[1]

(b) An isotope of oxygen is represented by the symbol shown.

¹⁷₈O

Deduce the number of protons, neutrons and electrons in this isotope of oxygen.

number of protons

number of neutrons

number of electrons

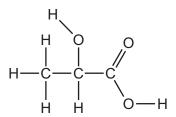
(c) Describe a test for oxygen.

result

[Total: 10]

[2]

2 (a) The table shows the mass of each type of ion present in a 100 cm³ sample of milk.


name of ion	formula of ion	mass of ion present in 100 cm ³ milk/mg
calcium	Ca ²⁺	125
chloride	C1-	120
	Mg ²⁺	12
phosphate	PO ₄ ³⁻	95
potassium	K⁺	140
sodium	Na⁺	58
	SO ₄ ²⁻	30
negative ions of organic acids		160

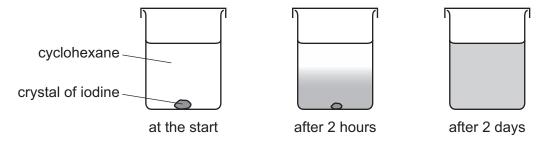
(i) Calculate the mass of calcium ions present in a 20 cm³ sample of this milk.

	mass of calcium ions = mg [1]
(ii)	Which positive ion is present in the highest concentration in this sample of milk?
	[1]
(iii)	Name the compound formed from Mg ²⁺ and SO ₄ ²⁻ ions.
	[1]
(iv)	Describe a test for chloride ions.
	test
	result
	[3]

(b) One of the organic acids present in milk is lactic acid. The structure of lactic acid is shown.

(ii) The molecular formula of ethanol is C_2H_6O .

	(i)	On the structure shown draw a circle around the carboxylic acid functional group.	[1]
	(ii)	Deduce the molecular formula of lactic acid showing the number of carbon, hydrogen a oxygen atoms.	and
			[1]
c)	Eth	anoic acid is another organic acid.	
	(i)	The reduction of ethanoic acid produces ethanol.	
		What is meant by the term reduction?	
			[1]


Complete the table to calculate the relative molecular mass of ethanol.

	number of atoms	relative atomic mass	
carbon	2	12	2 × 12 = 24
hydrogen			
oxygen			

relative molecular	mass =	 [2
relative molecular	111ass –	 -

[Total: 11]

- **3** This question is about halogens.
 - (a) A crystal of iodine was placed at the bottom of a beaker containing the solvent cyclohexane. After 2 days, a purple colour had spread throughout the cyclohexane.

explain these observations using the kinetic particle model.				
[3				

Question 3 continues on the next page.

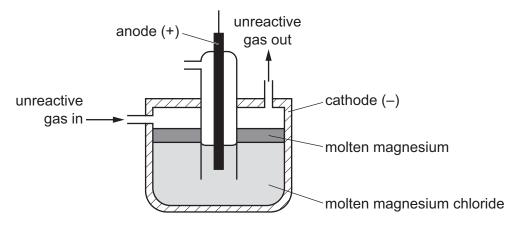
(b) The table shows the properties of some halogens.

halogen	melting point in °C	boiling point in °C	density when liquid in g/cm ³	colour
fluorine	-220	-188		
chlorine		-29	1.56	light green
bromine	-7	59	3.12	red-brown
iodine	114	184	3.96	grey-black

(i)	Complete	the	table	to	estimate:
-----	----------	-----	-------	----	-----------

- the density of liquid fluorine the melting point of chlorine.

	(ii)	Is fluorine lighter or darker in colour than chlorine? Explain your answer.	
		[1]
(iii)	What is the physical state of bromine at 40 °C? Give a reason for your answer.	
		[2]
(c)		mplete the chemical equation for the reaction of aqueous bromine with aqueouassium iodide.	JS
		+ $2KI \rightarrow I_2 +KBr$ [2]


[2]

[Total: 10]

4	This	s question is about organic compounds.	
	(a)	Which two statements about members of a homologous series are correct? Tick two boxes.	
		They have similar chemical properties.	
		They have similar physical properties.	
		They have the same functional group.	
		They have the same relative molecular mass.	
		They have the same number of carbon atoms.	[2]
	(b)	To which homologous series do methane and ethane belong?	
			[1]
	(c)	Methane and ethane are both hydrocarbons.	
		What is meant by the term <i>hydrocarbon</i> ?	
			[2]
			L - .
	(d)	Draw the structure of ethane showing all of the atoms and all of the bonds.	
			[1]

(e)	The	e hydrocarb	on tetradecane, C	₁₄ H ₃₀ , car	be cracked to	form a mixture	of alkanes and alkenes.
	(i)	State two	conditions neede	d for crac	cking.		
		1					
		2					
							[2]
	(ii)	Complete hydrocarb	•	uation fo	r the cracking	of tetradecand	e to form two different
			C ₁₄ H ₃₆	$_{0} \rightarrow C_{3}H$	6 +		[1]
(f)	Eth	anol can be	e manufactured fro	om ethen	e.		
	Complete the word equation for this reaction.						
			ethene +		→	ethanol	[1]
(g)	Eth	ene can be	polymerised to fo	orm poly(ethene).		
	Cor	mplete the	sentence about th	is reactio	n using words	from the list.	
	á	addition	condensation	ions	monomers	oxidation	polymers
	Eth	ene	comb	ine to for	m poly(ethene)	by	polymerisation. [2]
							[Total: 12]

- **5** This question is about metals.
 - (a) Magnesium is manufactured by the electrolysis of molten magnesium chloride.

(i)	What information in the diagram shows that molten magnesium is less dense than molter magnesium chloride?
	[1]
(ii)	One of the products of this electrolysis is magnesium.
	State the name of the other product.
	[1]
An	unreactive gas is blown over the surface of the molten magnesium.
iii)	Suggest why an unreactive gas and not air is blown over the surface of the molter magnesium.
	[1]
iv)	Suggest the name of an unreactive gas which could be used.
	ra:

(b) The table shows some properties of four metals.

metal	density in g/cm³	melting point in °C	relative strength	relative electrical conductivity
aluminium	2.7	660	7	9
cobalt	8.9	1495	21	4
gallium	5.9	30	1	1
nickel	8.9	1455	20	3

Answer these questions using **only** the information shown in the table.

(i) Which metal is most suitable to make the body of an aircraft? Give a reason for your answer.	
(i	i) Which metal is most suitable to use for overhead power cables? Give a reason for your answer.	
		. [2]
(ii	i) Which two metals in the table are transition elements?	
	and	. [1]
(c) (Give two properties of transition elements which are not shown by Group I elements.	
,	1	
2	2	[2]
(d) (Cobalt is added to iron to make steel alloys.	
(i) What is meant by the term alloy?	
(i	i) Give one reason why alloys are used instead of pure metals.	. ניו
		. [1]
	[Tota	: 13]

6

This	qu	estion is about sulfur and its compounds.
(a)	Nat	tural gas contains hydrocarbons and hydrogen sulfide.
	(i)	Give the name of the hydrocarbon which is present in the greatest concentration in natura gas.
		[1]
((ii)	Hydrogen sulfide is removed from natural gas by reaction with oxygen in the presence of a catalyst.
		What is the purpose of a catalyst?
		[1]
(b)	(i)	Name the acid manufactured from sulfur.
		[1]
((ii)	When fossil fuels containing sulfur are burned, sulfur dioxide is formed. Sulfur dioxide contributes to acid rain.
		Give one harmful effect of acid rain on buildings.
		[1]
(i	iii)	Sulfur dioxide is oxidised by nitrogen dioxide in the atmosphere to form sulfur trioxide.
		$SO_2 + NO_2 \rightarrow SO_3 + NO$
		How does this equation show that sulfur dioxide is oxidised?
		[1]
		[Total: 5]

Acids	Acids have characteristic chemical properties.						
(a) [calcium magnesi	oxide	ydrochloric aci our choice.	d with:			
						[5]	
(b) A	cids react v	vith alkalis suc	h as sodium h	ydroxide.			
(i	i) What typ	oe of chemical	reaction is this	?			
						[1]	
(ii			ring pH values i ne correct ansv		queous solution of s	odium hydroxide?	
		pH 2	pH 5	pH 7	pH 13	[1]	
(iii	i) A mixtur	e of sodium hy	droxide and a	mmonium sulfa	te is warmed gently	•	
	State the	e name of the	gas produced.				
			-			[1]	

(iv)	The melting point of sodium hydroxide is 319 °C. The boiling point of sodium hydroxide is 1390 °C.	
	Which one of the following statements about sodium hydroxide is correct? Tick one box.	
	Pure sodium hydroxide melts over a range of temperatures.	
	Impure sodium hydroxide has a sharp melting point.	
	Pure sodium hydroxide boils between 319°C and 1390°C.	
	Pure sodium hydroxide has a sharp boiling point.	[1]
(v)	Sodium hydroxide is used in the manufacture of some medicines.	
	Why is it important that the ingredients used in medicines are pure?	
		[1]
	от]	tal: 10]

U	11118	s question is about iron and its compounds.
	(a)	A student investigates the rate of reaction of 1 g of iron powder with 25cm^3 of hydrochloric acid of concentration 2.0mol/dm^3 . The temperature is 20°C .

What effect do the following have on the initial rate of this reaction?

(i)	Using hydrochloric acid of concentration 1.2 mol/dm³. All other conditions are kept the same.	
		[1]
(ii)	Using a piece of iron of mass 1 g. All other conditions are kept the same.	
		[1]
(iii)	Carrying out the experiment at 25 °C. All other conditions are kept the same.	
		[1]
(b) Sid	lerite is an ore of iron.	
(i)	State the name of one other ore of iron.	
		[1]
(ii)	Siderite contains mainly iron(II) carbonate.	
	Describe how to show that siderite contains a carbonate.	

(c) Iron can be extracted from its oxide by reduction with carbon.

The table shows how easy it is to reduce four metal oxides by heating with carbon.

metal oxide	ease of reduction with carbon
bismuth(III) oxide	only reduced above 250 °C
iron(III) oxide	only reduced above 650°C
tin(II) oxide	only reduced above 500°C
titanium(IV) oxide	not reduced at 700°C

Use this information to put the metals in order of their reactivity. Put the least reactive metal first.

least reactive —	→ most reactive			
				[2]

[Total: 9]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the line promised to a contract the line promised the line promised to a contract the line promised the line promised to a contract the line promised the line promised to a contract the line promised the line promised the line promised the line promised

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of Elements

THE PERIODIC TABLE OF EIGHTS		\equiv	F 5	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	첫	krypton 84	54	Xe	xenon 131	98	R	radon			
		₹			6	ட	fluorine 19	17	Cl	chlorine 35.5	35	Ŗ	bromine 80	53	Н	iodine 127	85	¥	astatine -			
		5		80	0	oxygen 16	16	S	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ъо	molod –	116	_	livermorium -	
		>		7	Z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	<u>B</u>	bismuth 209				
	Group	≥			9	ပ	carbon 12	14	:S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	Ρl	flerovium -
		=			2	В	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204			
											30	Zu	zinc 65	48	р О	cadmium 112	80	Нg	mercury 201	112	ű	copernicium —
											29	Cn	copper 64	47	Ag	silver 108	62	Au	gold 197	111	Rg	roentgenium -
											28	ī	nickel 59	46	Pd	palladium 106	78	Ŧ	platinum 195	110	Ds	darmstadtium -
		=									27	ပိ	cobalt 59	45	뫈	rhodium 103	77	'n	iridium 192	109	¥	meitnerium -
			- エ	hydrogen 1							26	Ьe	iron 56	44	Ru	ruthenium 101	92	Os	osmium 190	108	H	hassium -
			Key	,						25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	Bh	bohrium —	
				atomic number atomic symbol	loc	ISS				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	>	tungsten 184	106	Sg	seaborgium -	
					mic syml	name relative atomic mass				23	>	vanadium 51	41	g	niobium 93	73	<u>a</u>	tantalum 181	105	Ср	dubnium —	
					ato	rela				22	ı=	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	꿆	rutherfordium -	
								•			21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
					4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	99	Ва	barium 137	88	Ra	radium —
		_			က	:=	lithium 7	11	Na	sodium 23	19	¥	potassium 39	37	В	rubidium 85	55	S	caesium 133	87	ъ.	francium -

r ₂	lutetium 175	103	۲	lawrencium -
V ₀	ytterbium 173	102	8	nobelium –
e9 Tm	thulium 169	101	Md	mendelevium -
88 П	erbium 167	100	Fm	fermium –
67 Ho	holmium 165	66	Es	einsteinium –
e Dy	dysprosium 163	86	ర	californium -
65 Tb	terbium 159	26	益	berkelium -
² D	gadolinium 157	96	CB	curium
e3 Eu	europium 152	92	Am	americium _
62 Sm	samarium 150	94	Pu	plutonium
e1 Pm	promethium —	93	dN	neptunium -
9 P	neodymium 144	92	\supset	uranium 238
59 P	praseodymium 141	91	Ра	protactinium 231
Se Se	cerium 140	06	드	thorium 232
57 La	lanthanum 139	88	Ac	actinium -

lanthanoids

actinoids

The volume of one mole of any gas is $24\,\mathrm{dm^3}$ at room temperature and pressure (r.t.p.).