

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
CHEMISTRY			0620/32
Paper 3 Theory	(Core)		February/March 2017
			1 hour 15 minutes
Candidates ans	wer on the Question Paper.		

READ THESE INSTRUCTIONS FIRST

No Additional Materials are required.

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

A copy of the Periodic Table is printed on page 16.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

This document consists of 14 printed pages and 2 blank pages.

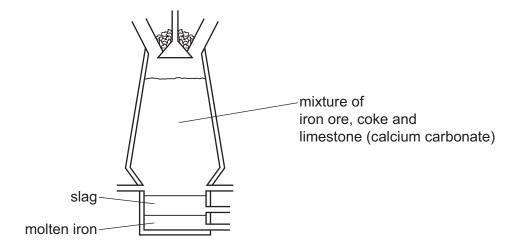
1 (a) Choose from the list of elements to answer the following questions.

aluminium
argon
carbon
lithium
magnesium
nickel
nitrogen
oxygen
sulfur

Each element can be used once, more than once or not at all.

Which	element
* * 1 11 01 1	CICITION

(i)	forms 21% of dry air,	
		[1]
(ii)	reacts rapidly with cold water to produce hydrogen,	
		[1]
(iii)	is in Group III of the Periodic Table,	
		[1]
(iv)	has atoms which have a complete outer shell of electrons,	
		[1]
(v)	is a transition element,	
		[1]
(vi)	forms stable ions with a single positive charge?	
		[1]


(b) Complete the table to show the number of electrons, neutrons and protons in the nickel atom and oxide ion shown.

	number of electrons	number of neutrons	number of protons
⁶² ₂₈ Ni			28
¹⁸ ₈ O ²⁻			

[4]

[Total: 10]

2 The diagram shows a blast furnace for extracting iron.

- (a) (i) On the diagram write
 - the letter **A** to show where air is blown into the furnace,
 - the letter W to show where waste gases exit the furnace.

(ii) How do you know from the information in the diagram that slag is less dense than molten iron?

(b) Limestone (calcium carbonate) is one of the raw materials added to the blast furnace. Calcium carbonate undergoes thermal decomposition in the blast furnace.

(i) What is meant by the term thermal decomposition?

(ii) Complete the chemical equation for this reaction.

 $CaCO_3 \rightarrow CaO + \dots$ [1]

[2]

(iii) A further reaction in the blast furnace involves calcium oxide, CaO.

Describe this reaction and explain its importance.

(c) Pure iron can be prepared by electrolysis of an aqueous solution of a suitable iron(II) salt.

Draw a labelled diagram of an electrolysis cell that could be used to carry out this reaction. In your diagram include

- the electrodes,
- the electrolyte,
- the power supply.

(d) (i) State the name of an element that could be used for the electrodes.

[1]

(ii) State one property that an electrode should have.

[1]

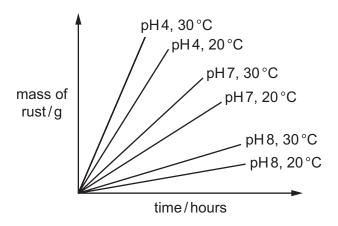
[3]

(e) Pure iron can also be prepared by the thermal decomposition of iron pentacarbonyl. The structure of iron pentacarbonyl is shown.

(i) Write the formula for iron pentacarbonyl.

.....[1]

(ii) The word equation for the reaction is shown.


iron pentacarbonyl → iron + carbon monoxide

Explain why the gaseous product is hazardous.

.....[1]

(f)	The	rate of rusting of iron varies with pH and temperature.
	(i)	What two substances must be in contact with iron for it to rust?

(ii) The graph shows the rate of rusting at different pH values and temperatures.

How do pH and temperature affect the rate of rusting?

pH	
temperature	
•	[2]

[Total: 19]

The hydrocarbons burnt in car engines react with air to form a mixture of gases.

The table shows the composition of the mixture of all the gases coming from a car exhaust.

gas	% of gas in the exhaust gases
carbon dioxide	15
carbon monoxide	3
hydrocarbons	2
hydrogen	1
nitrogen oxides	1
oxygen	1
water vapour	18
gas X	59

(a)	lde	ntify gas X .	
			[1]
(b)	Cai	rbon dioxide is formed when hydrocarbons such as octane are burnt in car engines.	
	(i)	What is meant by the term <i>hydrocarbon</i> ?	
			[2]
	(ii)	Complete the word equation for this reaction.	
		octane + \rightarrow carbon dioxide +	[2]
	(iii)	The concentration of carbon dioxide in the atmosphere is increasing.	
		Explain why this is a global concern.	
			[2]
	(iv)	Explain why carbon monoxide is present in the exhaust gases.	
			[1]

(v) Complete the table to calculate the relative molecular mass of octane, C_8H_{18} .

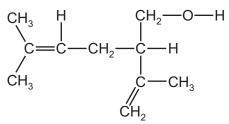
	number of atoms	relative atomic mass	relative mass in octane
hydrogen	18	1	18 × 1 = 18
carbon			

relative m	nolecular	mass =	 [2]	ı
CIGUIVOII	loloddiai	111400	 1	ı

(c) Octane is an alkane.

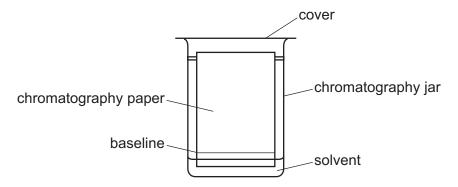
The table shows some properties of different alkanes.

alkane	formula	melting point /°C	boiling point /°C
methane	CH₄	-182	-164
ethane	C_2H_6	-183	-88
propane	C ₃ H ₈	-190	-42
butane	C ₄ H ₁₀	-138	0
pentane	C ₅ H ₁₂	-130	36

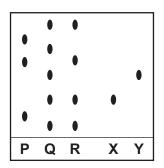

(i)	How does the boiling point of the alkanes change with the number of carbon atoms?	
		[1
(ii)	Which alkane in the table is liquid at room temperature (20 °C)? Explain your answer.	
		[2
(iii)	Draw the structure of methane showing all of the atoms and all of the bonds.	

[1]

[Total: 14]


Amm	onia is manufactured by combining nitrogen and hydrogen at high temperature and pressure
	$N_2 + 3H_2 \rightleftharpoons 2NH_3$
(a) V	Vhat does the symbol ← mean?
	[1]
(b) A	mmonia is used to make fertilisers.
E	explain why farmers spread fertilisers on the soil where they are going to grow crops.
	[1]
(c) S	ome fertilisers are salts made by adding acids to ammonia.
	Sive the name of the compound formed when ammonia reacts with nitric acid.
	[1]
(d) E	armers use calcium oxide to treat acidic soils.
(i) Explain how calcium oxide helps treat acidic soils.
	[1]
(ii) Suggest why farmers need to treat soils which are too acidic.
	[1]
	[Total: 5]
	[· · · · · · · · · · · · · · · · · · ·

Lavandulol is a compound found in lavender flowers. 5 The structure of lavandulol is shown.


		3.12	
(a)	On	the diagram, draw a circle around the alcohol functional group.	[1]
(b)	Hov	w many carbon atoms are there in one molecule of lavandulol?	Γ 4 .
(c)	(i)	What feature of the lavandulol structure shows that it is unsaturated?	•
	(ii)	Describe a test to show that lavandulol is unsaturated.	····· ['.
		test	
		result	[2]
(d)		vandulol can be extracted from lavender flowers. e following statements are about the procedure for extracting lavandulol.	
	A B C D E	Stir the mixture and leave it for a few hours. Filter off the solid from the solution. Distil the solution. Add solvent to the ground up lavender flowers. Grind up the lavender flowers.	
		the statements A , B , C , D and E in the correct order. It is first one has been done for you.	
		E	
			[2]

(e) Chromatography can be used to separate the coloured pigments extracted from lavender flowers. The apparatus used is shown.

After a few minutes the solvent vapour fills the whole chromatography jar.
Use the kinetic particle model to explain this.
[3]

(f) Three different dye mixtures, **P**, **Q** and **R**, were placed on a sheet of chromatography paper. Two pure dyes, **X** and **Y**, were also placed on the same piece of chromatography paper. The experiment was carried out and the results are shown.

(i)	Where were the dyes placed on the chromatography paper at the start of the experimen	nt?
		[1]
(ii)	Which dye mixture contained the greatest number of dyes?	
		[1]
iii)	Which dye mixture contained both dye X and dye Y ?	
		[1]

[Total: 13]

6

	orine and sodium hydroxide are manufactured by the electrolysis of concentrated aqueous ium chloride.
(a)	Chlorine is produced at the positive electrode (anode).
	Name the substance produced at the negative electrode (cathode) during the electrolysis.
	[1]
(b)	State the name of the particle that is removed from a chloride ion to make a chlorine atom.
	[1]
(c)	Complete the electronic structure of a chlorine molecule.
	Cl Cl
	[2]
(d)	Describe a test for chlorine.
	test
	result[2]
(e)	If chlorine reacts with sodium hydroxide, sodium chlorate(I), NaOC \it{l} , is formed. Another compound of sodium is also produced. This forms a white precipitate on addition of aqueous silver nitrate.
	Complete the chemical equation for this reaction.
	Cl_2 +NaOH \rightarrow NaOC l + + H_2 O

[2]

(f) 1000 g of a solution produced by the electrolysis of concentrated aqueous sodium chloride contains the following masses of compounds.

compound	mass of substance present/g
sodium chlorate(I)	300
sodium chloride	6
sodium hydroxide	9
water	685
total	1000

(i) Calculate the mass of sodium hydroxide present in 200 g of this solution.

[1]

(ii) All the water from the 1000 g of solution is evaporated.

Deduce the mass of the remaining mixture.

[1]

[Total: 10]

				10					
Me	tals l	have char	acteristic properties.						
(a)		te about t	he properties of meta er	als.					
 refer to the physical properties which are characteristic of metals, refer to the chemical properties which are characteristic of metals, include a word equation to show a chemical reaction of a metal. 									
	••••								
	••••								
(b)	The	e table sho	ows how easy it is to	reduce four metal oxides. ease of reduction					
			calcium oxide	not reduced by carbon at 1600 °C					
			magnesium oxide	reduced by carbon at 1600 °C					
			nickel(II) oxide	reduced by carbon at 350 °C					
			zinc oxide	reduced by carbon at 850 °C					
	Use		rmation to put the m	netals in order of their reactivity. Put the least reactive n					
		st reactive	e ————	→ most reactive					
(c)	Ura	nium is a	radioactive metal wh	hich has several isotopes.					
(0)									
	(i)	vvnat is	the meaning of the te	erm isotopes?					
	(ii)	Give the	main use of the isoto	ope ²³⁵ U.					

[Total: 9]

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of Elements

		\equiv	F 5	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	첫	krypton 84	54	Xe	xenon 131	98	R	radon			
		₹			6	ட	fluorine 19	17	Cl	chlorine 35.5	35	Ŗ	bromine 80	53	Н	iodine 127	85	¥	astatine -			
		5			80	0	oxygen 16	16	S	sulfur 32	34	Se	selenium 79	52	Б	tellurium 128	84	Ъ	molod –	116	_	livermorium –
		>			7	Z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	<u>B</u>	bismuth 209			
		≥			9	ပ	carbon 12	14	:S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	Ρl	flerovium -
		=			2	В	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204			
											30	Zu	zinc 65	48	р О	cadmium 112	80	Нg	mercury 201	112	ű	copernicium -
SHEHE											29	Cn	copper 64	47	Ag	silver 108	62	Au	gold 197	111	Rg	roentgenium -
me renouic table of Elements	Group										28	ī	nickel 59	46	Pd	palladium 106	78	Ŧ	platinum 195	110	Ds	darmstadtium -
ווסמוכיום	Gro										27	ပိ	cobalt 59	45	뫈	rhodium 103	77	'n	iridium 192	109	¥	meitnerium -
ב ב ב			- エ	hydrogen 1							26	Ьe	iron 56	44	Ru	ruthenium 101	92	Os	osmium 190	108	H	hassium
					,						25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	Bh	bohrium —
						loc	ISS				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	>	tungsten 184	106	Sg	seaborgium -
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	g	niobium 93	73	<u>a</u>	tantalum 181	105	Ср	dubnium —
						ato	rela				22	ı=	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	꿆	rutherfordium -
								•			21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
		=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	99	Ва	barium 137	88	Ra	radium —
		_			က	:=	lithium 7	11	Na	sodium 23	19	¥	potassium 39	37	В	rubidium 85	55	S	caesium 133	87	ъ.	francium -

r ₁	lutetium 175	103	۲	lawrendum -
²⁰ Y	ytterbium 173	102	8	nobelium –
e9 Tm	thulium 169	101	Md	mendelevium -
88 <u>n</u>	erbium 167	100	Fm	fermium –
67 Ho	holmium 165	66	Es	einsteinium –
® Dy	dysprosium 163	86	ర	californium -
es Tb	terbium 159	26	益	berkelium -
² D	gadolinium 157	96	CB	curium
63 Eu	europium 152	92	Am	americium _
62 Sm	samarium 150	94	Pu	plutonium
61 Pm	promethium —	93	δ	neptunium –
9 P X	neodymium 144	92	\supset	uranium 238
59 Pr	praseodymium 141	91	Ра	protactinium 231
Ce Ce	cerium 140	06	드	thorium 232
57 La	lanthanum 139	88	Ac	actinium I

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).