

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
CHEMISTRY			0620/32
Paper 3 (Extend	ded)	Fe	bruary/March 2015
			1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

A copy of the Periodic Table is printed on page 12.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

I		ches the description.
	(a)	an element which is gaseous at room temperature and pressure
		[1]
	(b)	an element that is added to water to kill bacteria
		[1]
	(c)	an element that forms a basic oxide of the type XO
	, D	[1]
	(a)	an element used as an inert atmosphere in lamps
	(e)	an element that forms an amphoteric oxide
	(0)	[1]
	(f)	an element that reacts vigorously with cold water to produce hydrogen
		[1]
		[Total: 6]
2	(a)	Define the term <i>isotope</i> .
		[2]
	(b)	The table gives information about four particles, A , B , C and D .
	` ,	Complete the table.
		The first line has been done for you.

particle	number of protons	number of electrons	number of neutrons	nucleon number	symbol or formula
Α	6	6	6	12	С
В	11	10	12		
С	8		8		O ²⁻
D		10		28	Al ³⁺

[7]

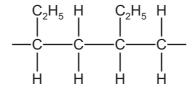
[Total: 9]

3	Ammonia is manufactured by the Haber process. Nitrogen and hydrogen are passed over a catalyst
	at a temperature of 450 °C and a pressure of 200 atmospheres.

The equation for the reaction is as follows.

$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$

The forward reaction is exothermic.


(a)	Sta	te one use of ammonia. [1
(b)	Wh	at is the meaning of the symbol ← ?
(c)	nitro	at are the sources of nitrogen and hydrogen used in the Haber process?
(d)		rogen[2 ne the catalyst in the Haber process.
		[1
(e)	(i)	If a temperature higher than 450 °C was used in the Haber process, what would happen to the rate of the reaction? Give a reason for your answer.
	(ii)	If a temperature higher than 450 °C was used in the Haber process, what would happen to the yield of ammonia? Give a reason for your answer.
		ים

(f)	(i)	If a pressure higher than 200 atmospheres was used in the Haber process, what wou happen to the yield of ammonia? Give a reason for your answer.	
	(ii)	Explain why the rate of reaction would be faster if the pressure was greater the 200 atmospheres.	an
	(iii)	Suggest one reason why a pressure higher than 200 atmospheres is not used in the Haber process.	ιе
(g)		aw a dot-and-cross diagram to show the arrangement of the outer (valency) electrons in or lecule of ammonia.	ıе
			[2]
(h)	Am	monia acts as a base when it reacts with sulfuric acid.	
	(i)	What is a base?	[1]
	(ii)	Write a balanced equation for the reaction between ammonia and sulfuric acid.	21
			.–,

(a)	A co	ompound X contains 82.76% of carbon by mass and 17.24% of hydrogen by mass.	
	(i)	Calculate the empirical formula of compound X .	
	(ii)	Compound X has a relative molecular mass of 58.	[2]
		Deduce the molecular formula of compound X .	
			[2]
(b)	Alke	enes are unsaturated hydrocarbons.	
	(i)	State the general formula of alkenes.	F41
	(ii)	State the empirical formula of alkenes.	[1]
			[1]
(c)		at is meant by the term <i>unsaturated hydrocarbon</i> ? aturated	
	hya	rocarbon	
			[2]

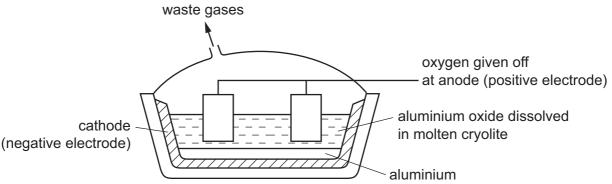
(d)	Describe a test that would distinguish between saturated and unsaturated hydrocarbons.	
	reagent	
	observation (saturated hydrocarbon)	
	observation (unsaturated hydrocarbon)	
		[3

(e) Addition polymers can be made from alkenes. The diagram shows part of an addition polymer.

/i\	Draw a circle on the diagram to show one ren	voot unit in this polymor	[4]
(1)	Draw a circle on the diagram to show one rep	eat unit in this polymer.	_ []]

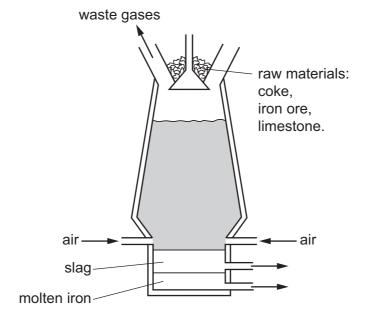
(ii) Give the structure and the name of the monomer used to make this polymer. structure

name	[2]


(iii) Give the structure of an isomer of the alkene in (e)(ii).

[1]

[Total: 15]


5 Aluminium and iron are extracted from their ores by different methods.

Aluminium is extracted from its purified oxide ore by electrolysis.

Πe	aluminium	
(a)	What is the name of the ore of aluminium which consists mainly of aluminium oxide?	
		[1]
(b)	The electrodes are both made of the same substance.	
	Name this substance.	
		[1]
(c)	Aluminium oxide is dissolved in molten cryolite before it is electrolysed.	
	Give two reasons why aluminium oxide dissolved in molten cryolite is electrolysed rather the molten aluminium oxide alone.	ıan
		[2]
(d)	Write the ionic equations for the reactions at the electrodes in this electrolysis.	
	anode (positive electrode)	
	cathode (negative electrode)	[2]
		1

(e) Iron is extracted from its oxide ore by reduction using carbon in a blast furnace.

	(i)	Place the elements aluminium, carbon and iron in order of reactivity with the least reactive element first.
		[1]
	(ii)	Use your answer to (e)(i) to explain why iron is extracted by reduction using carbon but aluminium is not.
		[1]
(f)	Wh	at is the name of the ore of iron which consists mainly of iron(III) oxide?
		[1]
(g)	Wri	te balanced equations for the reactions occurring in the blast furnace which involve
	(i)	the complete combustion of coke (carbon),
		[1]
	(ii)	the production of carbon monoxide from carbon dioxide,
		[1]
	(iii)	the reduction of iron(III) oxide,
		[1]
	(iv)	the formation of slag.
		[1]

6 A student is told to produce the maximum amount of copper from a mixture of copper and copper(II) carbonate.

The student adds the mixture to an excess of dilute sulfuric acid in a beaker and stirs the mixture with a glass rod. The copper(II) carbonate reacts with the sulfuric acid, forming a solution of copper(II) sulfate but the copper does not react with the sulfuric acid.

The student then

•	removes	the unreacted	copper from	the mixture,
---	---------	---------------	-------------	--------------

CC	onverts the	solution o	f copper(II) s	sulfate	into	copper	bv a	series of	of reactions	3.
----------------------	-------------	------------	-----------	-------	---------	------	--------	------	-----------	--------------	----

(a)	sulf	scribe two things that the student would observe when the mixture is added to the dilute furic acid.
		[2]
(b)		scribe how the student can produce pure dry copper from the mixture of copper and $\operatorname{per}(\Pi)$ sulfate solution.
		[3]
(c)		e student then adds sodium hydroxide solution to the copper(II) sulfate solution to produce $per(\mathrm{II})$ hydroxide.
	(i)	Describe what the student would observe.
		[1]
	(ii)	Write an ionic equation for this reaction.
		[1]
(d)		er separating the copper(II) hydroxide from the mixture, the copper(II) hydroxide is heated engly. The copper(II) hydroxide decomposes into copper(II) oxide and steam.
	(i)	Write an equation for the decomposition of $copper(II)$ hydroxide. Include state symbols.
		[2]
	(ii)	Name a non-metallic element that can be used to convert copper(II) oxide into copper.
		[1]

© UCLES 2015 [Turn over

[Total: 10]

 $Ethanol\ is\ manufactured\ from\ glucose,\ C_6H_{12}O_6,\ by\ fermentation\ according\ to\ the\ following\ equation.$

		$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$	
(a)	Sta	te the conditions required for this reaction.	
			[2]
(b)	In a	an experiment, 30.0g of glucose was fermented.	
	(i)	Calculate the number of moles of glucose in 30.0 g.	
		mol [[2]
	(ii)	Calculate the maximum mass of ethanol that could be obtained from 30.0 g of glucose.	
		g [[2]
(i	iii)	Calculate the volume of carbon dioxide at room temperature and pressure that can lead to the control of the carbon dioxide at room temperature and pressure that can lead to the carbon dioxide at room temperature and pressure that can lead to the carbon dioxide at room temperature and pressure that can lead to the carbon dioxide at room temperature and pressure that can lead to the carbon dioxide at room temperature and pressure that can lead to the carbon dioxide at room temperature and pressure that can lead to the carbon dioxide at room temperature and pressure that can lead to the carbon dioxide at room temperature and pressure that can lead to the carbon dioxide at room temperature and pressure that can lead to the carbon dioxide at room temperature and pressure that can lead to the carbon dioxide at room temperature and pressure that can lead to the carbon dioxide at room temperature and pressure that can lead to the carbon dioxide at room temperature and pressure that can lead to the carbon dioxide at room temperature and pressure that the carbon dioxide at the carbon dioxide a	
	•	obtained from 30.0 g of glucose.	
		dm³ [[1]
(c)	Eth	anol can also be manufactured from ethene.	
. ,	(i)	Name the raw material which is the source of ethene.	
	(')		[1]
	(ii)	Write a balanced equation for the manufacture of ethanol from ethene.	1
·	- •	· 	[1]
		[Total:	9]

BLANK PAGE

The Periodic Table of the Elements **DATA SHEET**

								9.5	Group								
_	=											=	≥	>	5	=>	0
							1 Hydrogen										4 He Helium
7 Lithium 3 23	Beryllium 4 24											11 Boron 5	12 Carbon 6	14 N itrogen 7	16 Oxygen 8	19 Fluorine 9 35.5	Neon 10 40
Sodium 11	Mg Magnesium											At Aluminium 13	Silicon	Phosphorus	Sulfur 16	Chlorine	Ar Argon
39 K Potassium	Calcium	Scandium 21	48 T Titanium	51 Vanadium 23	Chromium Chromium 24	Mn Manganese 25	56 Fe Iron	Cobalt	59 Ni Nickel	64 Cu Copper 29	65 Zn 30	70 Ga Gallium 31	73 Ge Germanium 32	75 As Arsenic 33	Se Selenium 34	80 Br Bromine	84 Kr ypton 36
Rb Rubidium	St Strontium	89 Y	2 r Zirconium 40	Niobium Ni 41	96 Mo Molybdenum 42	Tc Technetium 13	Ru Ruthenium 44	Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	Cadmium 48	115 In Indium 49	119 Sn Tin 50	122 Sb Antimony 51	128 Te Tellurium 52	127 T lodine 53	131 Xe Xenon 54
133 Caesium 55	137 Ba Barium 56	139 La Lanthanum *	178 Hf Hafnium 72	181 Ta Tanantalum	184 W Tungsten 74	186 Re Rhenium 75	190 Os Osmium 76	192 Ir Iridium	195 Pt Platinum 78	197 Au Gold	201 Hg Mercury 80	204 T 1 Thallium 81	207 Pb Lead 82	209 Bis Bismuth 83	Po Polonium 84	At Astatine 85	Radon 86
Francium 87	226 Ra Radium 88	227 Ac Actinium †	Ĺ														
*58-711 190-103	*58-71 Lanthanoid series 190-103 Actinoid series	d series series		140 Ce Cerium 58	Pr Praseodymium 59	Neodymium 60	Pm Promethium 61	Sm Samarium 62	152 Eu Europium 63	157 Gd Gadolinium 64	159 Tb Terbium 65	162 Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tm Thulium 69	Yb Ytterbium 70	175 Lu Lutetium 71
Key	a ×	 a = relative atomic mass X = atomic symbol b = proton (atomic) number 		232 Th Thorium	Pa Protactinium	238 U Uranium 92	Neptunium	Pu Plutonium 94	Am Americium 95	Cm Curium	BK Berkelium 97	Cf Californium 98	Es Einsteinium 99	Fm Fermium 100	Md Mendelevium 101	No Nobelium 102	Lr Lawrendum 103

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.