

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
BIOLOGY			0610/31
Paper 3 Theory (Co	ore)	Oct	tober/November 2018
			1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

This document consists of 18 printed pages and 2 blank pages.

1 Fig. 1.1 shows a diagram of the human female reproductive system.

Fig. 1.1

		1 19.	1.1
(a)	Usir	ng letters A-F, identify the parts of the	human female reproductive system in Fig. 1.1.
	whe	re eggs are made	
	whe	re fertilisation occurs	
	whe	re implantation of the zygote occurs	[3]
(b)		trogen is a hormone responsible for th	e development of secondary sexual characteristics
	(i)	·	ale reproductive system that secretes oestrogen.
	(ii)	Describe how the hormone oestroger	n is transferred to its target organs.
			[1]
(c)	Tabl	e 1.1 shows some secondary sexual o	characteristics.
	Plac	ce ticks (🗸) in Table 1.1 to show which	characteristics develop during puberty in boys and

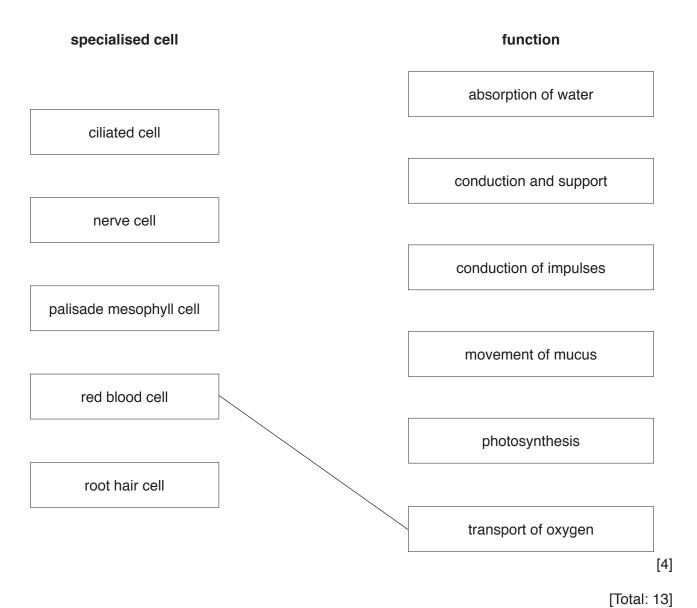
One row has been done for you.

girls.

Table 1.1

secondary sexual characteristic	boy	girl
breasts grow		✓
growth of sex organs		
growth of pubic hair		
start of menstruation		
voice deepens		

[4]


(d) Sperm and egg cells are specialised cells that are adapted for reproduction.

The boxes on the left show some specialised cells.

The boxes on the right show the functions of some specialised cells.

Draw four lines to link each specialised cell with its function.

One has been done for you.

2 The apparatus shown in Fig. 2.1 was used to investigate the effects of different conditions on the rate of photosynthesis in an aquatic plant.

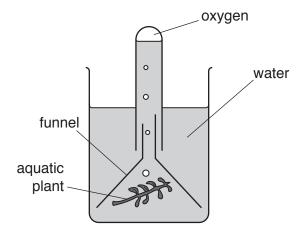


Fig. 2.1

A student investigated the effects of light and carbon dioxide on the rate of photosynthesis.

The number of bubbles of oxygen produced in one minute was counted in four different conditions.

Table 2.1 shows the results.

Table 2.1

test	condi	number of	
	light	carbon dioxide source added to the water	bubbles of oxygen per minute
1	present	no	2
2	absent	no	0
3	present	yes	20
4	absent	yes	0

(a)	State two conclusions about the conditions needed for photosynthesis using the information in Table 2.1.
	1
	2
	[2]

(b)	The investigation was carried out at 15 °C	. It was repeated at 25 °C.
	Suggest and explain the effect this had or	n the results of test 2 and test 3.
	test 2	
	test 3	
		[4]
(c)	Carbon dioxide enters plant cells by diffus	sion.
	The word diffusion on the left can be join statements about diffusion.	ned to two boxes on the right to make two correct
	Draw two straight lines from diffusion to the	ne boxes to complete the two statements.
	· ·	·
		involves a genetic change.
		is the movement of particles from high
		concentration to low concentration.
		is the movement of particles from low concentration to high concentration.
		5
Dif	ffusion	occurs due to the random movement of
		particles.
		only occurs in plant cells.
		requires a partially permeable
		membrane.
		requires energy.

[2]

[Total: 8]

3 A student completed different types of activity.

She measured her pulse rate during each type of activity in beats per minute (bpm).

The results are shown in Fig. 3.1.

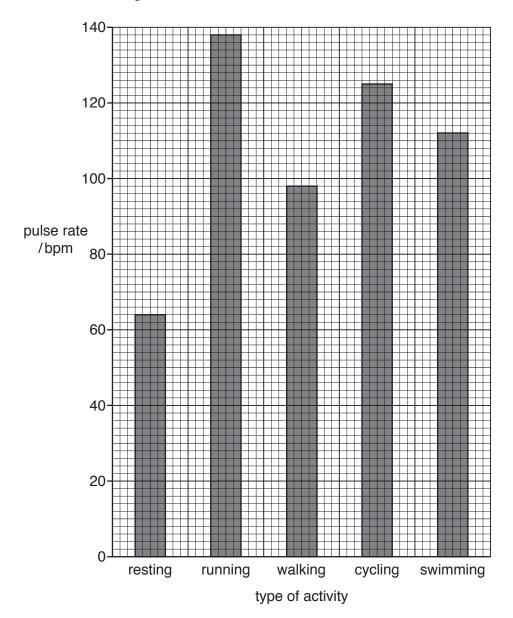


Fig. 3.1

(a) Use Fig. 3.1 to answer these questions.

(i) State the type of activity that results in the highest pulse rate.

[1]

	(ii)	State the pu	ulse rate of the s	tudent when she	e was cyclir	ng.	
							bpm [1]
	(iii)	Calculate th	e percentage in	crease in her pu	lse rate be	ween resting and w	alking.
		Show your	working and give	your answer to	the neares	t whole number.	
							%
							[2]
(b)	Mea	asuring the p	ulse is one way	of monitoring the	e activity of	the heart.	
	Stat	e one other	way of monitoring	ng the activity of	the heart.		
							[1]
(c)	Des	cribe the cha	anges to a perso	n's breathing du	ıring exerci	se.	
							[2]
(d)	Aer	obic respirati	on increases du	ring exercise.			
	Use	the words fr	om the list to co	mplete the defin	ition of <i>aer</i>	obic respiration.	
	Eac	h word or ph	rase may be use	ed once, more th	nan once o	not at all.	
		cells	carbon	dioxide	DNA	oxygen	
			the heart	the brain	nι	ıtrient	
	Aer	obic respirati	on is the chemic	al reactions in .		that us	е
			to brea	k down		molecules to r	elease
	ene	rgy.					[3]

,	Alla	terobic respiration occurs when exercising vigorously.
	(i)	State the word equation for anaerobic respiration in muscle cells.
		[1]
	(ii)	State one advantage of using aerobic rather than anaerobic respiration in humans.
		[1]
		[Total: 12]

4 (a) Fig. 4.1 shows the four different types of human teeth.

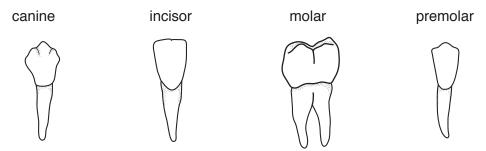


Fig. 4.1

Fig. 4.2 shows a diagram of the position of the different types of teeth in the mouth.

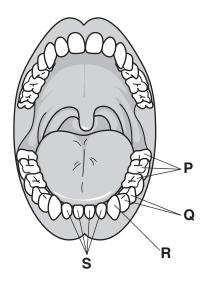


Fig. 4.2

Complete Table 4.1 by writing the names, positions and functions of the different types of teeth in the mouth shown in Fig. 4.2.

Table 4.1

name of type of tooth	letter on Fig. 4.2	function
	R	
incisor		
		grinding
premolar		tearing and grinding

[4]

(b)	Tee	th can develop dental decay.	
	(i)	Explain how dental decay is caused.	
			••••
			.[4]
	(ii)	Describe two ways to avoid dental decay.	
		1	
		2	••••
			 [2]

[Total: 10]

5 The energy we use comes from a variety of sources.

Fig. 5.1 shows the percentage of each source of energy used in one country in 2011.

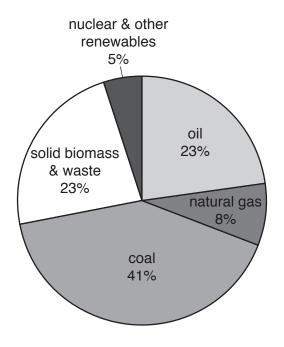


Fig. 5.1

(a) Coal, natural gas and oil are types of fossil fuel.

Calculate the total percentage of energy in Fig. 5.1 that came from fossil fuels.

		%	[1]
(b)	Ехр	lain why fossil fuels are not sustainable resources.	
			[1]
(c)	Cor	nbustion of fossil fuels releases carbon dioxide into the atmosphere.	
	(i)	State the name of two other processes that release carbon dioxide into the atmosphe	re.
		1	
		2	 [2]
	(ii)	State the name of one process that removes carbon dioxide from the atmosphere.	[-]

(d)	Describe the effects on the environment of increasing carbon dioxide concen atmosphere.	tration in	the
			[2]
(e)	Improvements in food production have allowed human populations to increase.		
	Describe how modern technology has increased the production of crop plants.		
			[3]
		[Total:	: 10]

6 Fig. 6.1 is a photograph of a lion.

Fig. 6.1

(a)	Lior	ns are mammals and have the scientific name Panthera leo.	
	(i)	State one feature visible in Fig. 6.1 that identifies the lion as a mammal.	
			[1]
	(ii)	State the genus of this mammal.	
			[1]
(b)	Maı	mmals are one of the five groups of vertebrates.	
		e list describes some of the features of fish, amphibians, reptiles, mammals and birds. ne features belong to more than one group.	
	Sta	te the name of one vertebrate group which has the distinguishing feature of:	
	sca	les	
	feat	hers	
	gills	S	
	smo	ooth moist skin	
(-)	Oto		[4]
(c)		te two features of the cells of all living organisms.	
	1		
	2		 [2]

7 Fig. 7.1 shows a goat with white fur.

Fig. 7.1

Fur colour is inherited in goats.

- The allele for white fur is represented by A.
- The allele for black fur is represented by **a**.
- Each goat is identified by the numbers 1 to 8 in Fig. 7.2.

Fig. 7.2 shows a diagram of the inheritance of fur colour in a herd of goats.

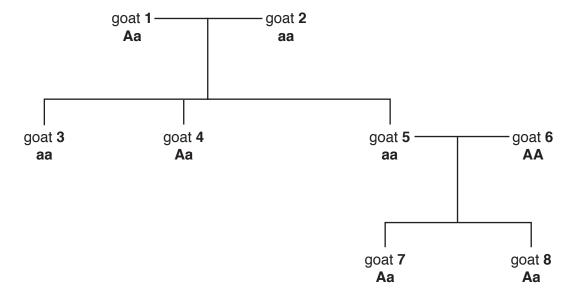


Fig. 7.2

(a)	Use	e Fig. 7.2 to answ	ver these o	questions.				
	(i)	State how man	y goats ha	ve white fur.				
							[1	
	(ii)	State the phen	otype of go	oat 5 .				
							[1	
	(iii)	Draw circles ar	ound two 1	erms that can be	used to descr	ibe the gen o	otype of goat 6.	
		black		dominant	heter	ozygous		
		homo	zygous	recessi	ive	white	[2	
(b)	Sta	te the name of th	ne type of v	ariation shown by	fur colour in	these goats.		
							[1	
(c)	A fa	armer identified t	wo goats to	breed together.				
	The genotype of the male goat is Aa .							
	The genotype of the female goat is Aa .							
	Complete the genetic diagram and the phenotypic ratio for this cross.							
					male			
		female						
		Tomaio						
				1	I I			
	phe	enotypic ratio		wh	ite:			
							[3	

(d)	Describe the process a farmer could use to breed a herd of white goats.
	[3]
	[Total: 11]

8 (a) Catalase is an enzyme that catalyses the breakdown of hydrogen peroxide into water and oxygen.

The effect of temperature on catalase activity was investigated.

The results are shown in Fig. 8.1

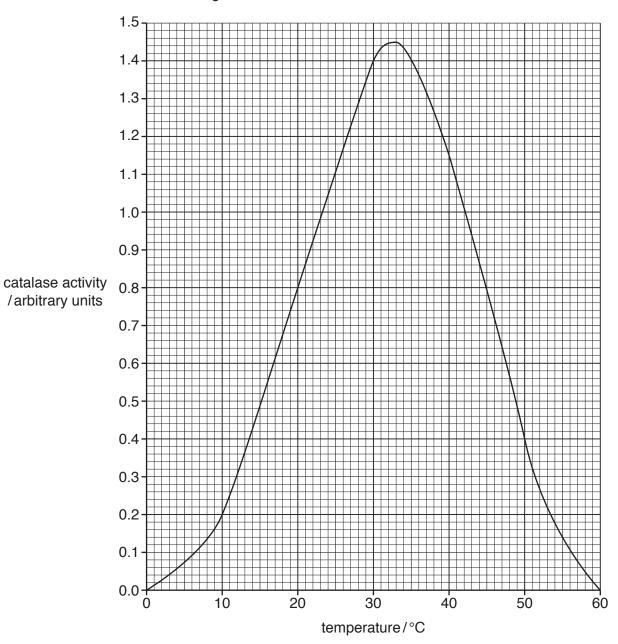


Fig. 8.1

(i)	State the temperature at which catalase is most active in Fig. 8.1.					
	°C [1]					
(ii)	Explain why there is no enzyme activity at 60 °C.					

Explain why there is no enzyme activity at 60 °C.

(b)	State one factor other than temperature that affects enzyme activity.				
(c)	to break down large insoluble molecules to				
	The boxes show some large insoluble molecules, some digestive enzymes and some smalle soluble molecules that are produced during digestion.				
	Draw one straight line from each enzyme to the insoluble molecule it acts on. Draw another line from each enzyme to the smaller soluble molecule that is produced.				
Draw a total of six lines.					
in	soluble molecule	enzyme	soluble molecules		
fat		amylase	amino acids		
	protein	lipase	fatty acids and glycerol		
	starch	protease	sugars		
			[5		

[Total: 8]

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.